
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Suffix trees and suffix arrays in primary and
secondary storage
Pang Ko
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Ko, Pang, "Suffix trees and suffix arrays in primary and secondary storage" (2007). Retrospective Theses and Dissertations. 15942.
https://lib.dr.iastate.edu/rtd/15942

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/15942?utm_source=lib.dr.iastate.edu%2Frtd%2F15942&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Suffix trees and suffix arrays in primary and secondary storage

by

Pang Ko

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Srinivas Aluru, Major Professor

David Fernández-Baca
Suraj Kothari

Patrick Schnable
Srikanta Tirthapura

Iowa State University

Ames, Iowa

2007

www.manaraa.com

UMI Number: 3274885

3274885
2007

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

ii

DEDICATION

To my parents

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1. INTRODUCTION . 1

1.1 Suffix Array in Main Memory . 1

1.2 Suffix Tree Layout in Secondary Storage . 5

1.3 Self-adjusting String Data Structures . 9

1.4 Contributions of this dissertation . 9

CHAPTER 2. LINEAR TIME SUFFIX ARRAY CONSTRUCTION 13

2.1 Space Requirement . 21

2.2 Reducing the Size of T ′ . 24

2.3 Related Work . 25

CHAPTER 3. SUFFIX TREE DISK LAYOUT 27

3.1 Static Layout . 27

3.2 Substring Search . 31

3.3 Updating the Suffix Tree . 37

3.3.1 Insertion and deletion algorithm . 37

3.3.2 Maintaining the structure of the partition 39

3.3.3 Maintaining the correct size information 47

www.manaraa.com

iv

CHAPTER 4. SELF-ADJUSTING LAYOUT 50

4.1 Self-adjusting layout . 50

4.2 Self-adjusting performance . 51

4.3 Discussion . 52

CHAPTER 5. DISCUSSION AND FUTURE RESEARCH DIRECTIONS 54

BIBLIOGRAPHY . 56

www.manaraa.com

v

LIST OF TABLES

Table 2.1 Algorithms and their descriptions. 25

Table 2.2 Comparison of different algorithms. 26

www.manaraa.com

vi

LIST OF FIGURES

Figure 1.1 The string “MISSISSIPPI$” and its suffix and lcp array. 2

Figure 1.2 The suffix tree for the string “MISSISSIPPI$”. 6

Figure 1.3 Inserting a new suffix in the McCreight’s Algorithm. 7

Figure 2.1 The string “MISSISSIPPI$” and the types of its suffixes. 14

Figure 2.2 Illustration of how to obtain the sorted order of all suffixes, from the

sorted order of type S suffixes of the string MISSISSIPPI$. 16

Figure 2.3 Illustration of the sorting of type S substrings of the string MISSISSIPPI$. 18

Figure 3.1 (a) The suffix tree of the string CATTATTAGGA$. The nodes of an

example partition are drawn as concentric circles. Braching nodes of

the partition are labeled as u, v, w. (b) The skeleton partition tree of

the example partition. 28

Figure 3.2 Two valid decompositions of the same partition. In each figure, solid

edge between two nodes represents that they belong to the same compo-

nent, while dashed lines means they belong to two different components. 29

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to thank my major professor Srinivas Aluru, for his mentoring during my time

as a graduate student in Iowa State University. This thesis will not be possible without his

encouragement and guidance. I would also like to thank Prof. David Fernández-Baca, Prof.

Suraj C. Kothari, Prof. Patrick S. Schnable, and Prof. Srikanta Tirthapura for serving on my

committee.

Many thanks to the past and present members of the research group: Scott J. Emrich,

Natsuhiko Futamura, Bhanu Hariharan, Benjamin N. Jackson, Anantharaman Kalyanaraman,

Srikanth Komarina, Mahesh Narayanan, Sarah M. Orley, Stjepan Rajko, Abhinav Sarje, Sudip

K. Seal, Meng-Shiou Wu, Xiao Yang, and Dr. Jaroslaw Zola, for their valuable insights during

our frequent discussion sessions.

www.manaraa.com

viii

ABSTRACT

In recent years the volume of string data has increased exponentially, and the speed at

which these data is being generated has also increased. Some examples of string data includes

biological sequences, internet webpages, and digitalized documents, to name a few. The in-

dexing of biological sequence data is especially challenging due to the lack of natural word

and sentence boundaries. Although many algorithms are able to deal with this lack of natural

boundaries, they are not able to process the large quantity of data in reasonable time. To

speed up the runtime of these algorithms, suffix trees and suffix arrays are routinely used to

generate a set of starting positions quickly and/or narrow down the set of possibilities need to

be considered.

The first contribution of this dissertation is a linear time algorithm to sort all the suffixes of

a string over a large alphabet of integers. The sorted order of suffixes of a string is also called

suffix array, a data structure introduced by Manber and Myers that has numerous applications

in pattern matching, string processing, and computational biology. Though the suffix tree of a

string can be constructed in linear time and the sorted order of suffixes derived from it, a direct

algorithm for suffix sorting is of great interest due to the space requirements of suffix trees.

Our result is one of the first linear time suffix array construction algorithms, which improve

upon the previously known O(n log n) time direct algorithms for suffix sorting. It can also be

used to derive a different linear time construction algorithm for suffix trees. Apart from being

simple and applicable for alphabets not necessarily of fixed size, this method of constructing

suffix trees is more space efficient.

The second contribution of this dissertation is providing a new suffix tree layout scheme for

secondary storage and present construction, substring search, insertion and deletion algorithms

www.manaraa.com

ix

using this layout scheme. For a set of strings of total length n, a pattern p and disk blocks of

size B, we provide a substring search algorithm that uses O(|p|/B + logB n) disk accesses. We

present algorithms for insertion and deletion of all suffixes of a string of length m that take

O(m logB(n + m)) and O(m logB n) disk accesses, respectively. Our results demonstrate that

suffix trees can be directly used as efficient secondary storage data structures for string and

sequence data.

The last contribution of this dissertation is providing a self-adjusting variant of our layout

scheme for suffix trees in secondary storage that provides optimal number of disk accesses for

a sequence of string or substring queries. This has been an open problem since Sleator and

Tarjan presented their splaying technique to create self-adjusting binary search trees in 1985.

In addition to resolving this open problem, our scheme provides two additional advantages: 1)

The partitions are slowly readjusted, requiring fewer disk accesses than splaying methods, and

2) the initial state of the layout is balanced, making it useful even when the sequence of queries

is not highly skewed. Our layout scheme, and its self-adjusting variant are also applicable to

PATRICIA trees, and potentially to other data structures.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Suffix tree and suffix array are important data structures in information retrieval, text

processing, and computational biology. They are especially suitable for indexing biological

sequences where predefined boundaries such as words, phrases, and sentences are absent. Bi-

ological sequence databases are increasing exponentially in recent years, both in terms of the

number of sequences, and the total size of the database. One of the most popular biological

sequence databases, GenBank, contains 71,802,595 sequences and 75,742,041,056 base pairs as

of April 2007 and its size has been doubling almost every 18 months [9]. Several applications

of suffix trees and suffix arrays in computational biology can be found in [3, 5, 28].

1.1 Suffix Array in Main Memory

Given a string T of length n, the suffix Ti (1 ≤ i ≤ n) of T is the substring of T starting

from position i and ending at the end of T . The suffix array of T is the lexicographically sorted

order of all its suffixes, usually denoted as SA. The suffix array is often used in conjunction

with another array, called lcp array, containing the lengths of the longest common prefixes

between every pair of consecutive suffixes in the suffix array. Figure 1.1 shows the string

“MISSISSIPPI$” and its suffix array and the associated lcp array.

Manber and Myers introduced the suffix array data structure [33] as a space-efficient al-

ternative for suffix trees. Gonnet et al.[19] have also independently developed the suffix array,

which they refer to as the PAT array. As a lexicographic-depth-first traversal of a suffix tree

can be used to produce the sorted list of suffixes, suffix arrays can be constructed in linear

time and space using suffix trees. However, this defeats the whole purpose if the goal is to

avoid suffix trees. Hence, Manber and Myers presented a direct construction algorithm that

www.manaraa.com

2

1 2 3 4 5 6 7 8 10 11 129Position

Suffix Array

lcp

M I S S I S S I P P I $String

0

2 1 10 9 7 4 6 312 11 8 5

1 1 4 0 0 1 0 2 1 3

Figure 1.1 The string “MISSISSIPPI$” and its suffix and lcp array.

runs in O(n log n) worst-case time and O(n) expected time. They construct the suffix array

by repeated bucketing:

1. Initially all suffixes are bucketed according to their first characters. This is referred to

as the partial suffix array SA1 because it is sorted according to the first characters.

2. Then for each entry j in SAh, the suffix TSAh[j]−h is moved to the front of its bucket. All

the suffixes in the partial suffix array have been sorted according to the first h characters

before the beginning of the step. Then at the end of this step all suffixes will be sorted

according to the first 2h characters.

3. Step 2 is repeated at most log n times, or until all the suffixes are in their own buckets.

Although Manber and Myers also presented a lcp array construction algorithm in their

paper, it requires O(n log n) additional time. The main idea is: if two adjacent suffixes are in

the same bucket after the suffix array is sorted according to the first h characters, then h is

stored as their temporary lcp. If two adjacent suffixes, say Ti and Tj , are split into two different

buckets after sorting according to the first h characters but not the first 1
2h characters, then

their correct lcp can be calculated by adding 1
2h to the lcp of Ti+ 1

2
h and Tj+ 1

2
h.

Kasai et al.[25] presented a linear time algorithm for constructing the lcp array directly

from the suffix array. Their algorithm uses the fact that if suffix Ti is next to suffix Tj in the

suffix array and shares a lcp of length ℓ, then suffix Ti+1 will share a lcp of length ℓ− 1 with

suffix Tj+1. If suffix Ti+1 is next to suffix Tk in the suffix array where k 6= j + 1, then the lcp

between Ti+1 and Tk is at least ℓ− 1.

www.manaraa.com

3

1. An array R is constructed such that if suffix Ti is in position j in the suffix array, then

R[i] = j. This allows the algorithm to locate any suffix in constant time.

2. Suppose the lcp between Ti and its adjacent suffix in the suffix array is ℓ. Then use

R[i+ 1] to find the position of Ti+1 in the suffix array, and start comparing Ti+1 with its

adjacent suffix in the suffix array from the (ℓ− 1) th character.

3. Repeat Step 2 until the entire lcp array is constructed.

It clear that only O(n) comparisons are needed because the lcp of the last suffix Tn is at

most 1. One of the major reasons for the construction of lcp array is to speed up the problem

of finding a pattern P in a string T of length n. To search for a pattern P in the string

T , a binary search is performed using P and the suffix array of T . Unlike binary searches

performed on integer arrays, each element in the suffix array corresponds to a suffix of the

string T , therefore, O(n) character comparisons are needed to decide whether P or a suffix is

lexicographically greater. By using the lcp array, the number of character comparisons needed

during the search can be reduced. Suppose P was compared to suffix Ti and has a lcp of ℓ, and

P is going to be compared with Tj. The lcp array can be used to find the lcp between Ti and

Tj , say k. If k < ℓ then we only need to compare the (k+1) th characters of P and Tj; If k > ℓ

then only the (ℓ+1)-th characters of P and Tj are compared; Otherwise the comparison starts

from (ℓ + 1) th character. This algorithm takes O(|P | + log n) time, without any restriction

on |Σ| – the size of alphabet that T and P are drawn from.

However, the classic problem of finding a pattern P in a string T of length n can be solved

in O(|P |) time for fixed size |Σ| using a suffix tree of T . Recently, Abouelhoda et al. [2, 4]

have improved the search time using suffix arrays to O(|P |) time by using additional linear

time preprocessing, thus making the suffix array based algorithm superior in terms of space

requirement. In fact, many problems involving top-down or bottom-up traversal of suffix trees

can now be solved with the same asymptotic run-time bounds using suffix arrays [1, 2, 4]. Such

problems include many queries used in computational biology applications including finding

exact matches, maximal repeats, tandem repeats, maximal unique matches and finding all

www.manaraa.com

4

shortest unique substrings. For example, the whole genome alignment tool MUMmer [13] uses

the computation of maximal unique matches.

While considerable advances are made in designing optimal algorithms for queries using

suffix arrays and for computing auxiliary information that is required along with suffix arrays,

the complexity of direct construction algorithms for suffix arrays remained O(n log n) so far.

Several alternative algorithms for suffix array construction have been developed, each improv-

ing the previous best algorithm by an additional constant factor [23, 32]. The algorithm by

Itoh and Tanaka is especially interesting. They divided all the characters of the string into

two types:

• Type A characters are the characters of string T that are lexicographically greater than

the next character, i.e. T [i] is a type A character if T [i] > T [i + 1].

• Otherwise the character is said to be of type B.

The algorithm then sorts all the suffixes starting with a type B character; it also sorts

all the suffixes begins with a type A character by their first characters. Finally the sorted

order of all suffixes are obtained by using the order of all suffixes that starts with a type

B character. Since 2003, many linear time direct suffix array construction algorithms were

produced [21, 24, 26, 27, 29]. All of them divide the string into substrings, rank the substrings,

and use the rankings to from a new string, then recursively process this new string.

Of all the linear time construction methods, Kärkkäinen and Sanders method is the easiest

to understand.

1. Given a string T of length n, a three-letter substring (triplet) starting at i is constructed

for each position i .

2. All the resulting triplets are sorted lexicographically.

3. Let i be the starting position of a triplet, then i = k mod 3, 0 ≤ k ≤ 2. A string T k is

formed by concatenating all the triplets whose starting positions are equal to k mod 3 in

the same order they appear in the original string.

www.manaraa.com

5

4. A new string T ′ is constructed by concatenating T 1 and T 2, and is recursively sorted.

5. The suffix array of T ′ contains the lexicographical order of all suffixes Ti of T such that

i = 1 mod 3 and i = 2 mod 3.

6. The sorted order of all suffixes Tj , j = 0 mod 3 can be calculated using a linear time

sorting, using the first character of Tj and the lexicographical order of Tj+1 in the suffix

array of T ′.

7. The suffix array of T ′ and the order of all suffixes Tj, j = 0 mod 3, can be merged in linear

time. The order of two suffixes is determined by comparing either the first or the first

two characters of the suffixes as needed and then comparing the ranks of corresponding

suffixes in the suffix array of T ′.

The above algorithm constructs the suffix array in O(n) time. Hon et al. [21] provided the

first linear time construction algorithm for compressed suffix array which uses only O(n) bits.

1.2 Suffix Tree Layout in Secondary Storage

The suffix tree of a set of strings is a compacted trie of all suffixes of all the strings,

an example of the suffix tree can be found in Figure 1.2. Since the introduction of this

data structure by Weiner [38], several linear time algorithms for in-memory construction of

suffix trees have been designed, notable ones include McCreight’s linear space algorithm [34],

Ukkonen’s on-line algorithm [37], and Farach’s algorithm for integer alphabets [14]. To extend

the scale of data that can be handled in-memory, Grossi and Vitter [20] developed compressed

suffix trees and suffix arrays.

Most of the suffix tree construction algorithms make use of suffix links. Let u be a node in

the suffix tree, and the concatenation of all the edge labels from the root to u be cα, where c

is a character and α is the remainder, possibly even a zero length string. Let v be a node in

the suffix tree, and the concatenation of all the edge labels from the root to v be α. A suffix

link is a pointer from u to v (see Figure 1.2 for an example).

www.manaraa.com

6

$

$

$

$

$

$

$

$

8

12

11

2

1

7

4
6

3

$

5

10
9

$

$

S

P
I

$

M
I

S
S
I

S

I
P

I

I
P

P S

S

I

I
P

P

S
I

S

P
P

I

P

PI

I

I

I

S

P
P
I

S

I
P
P
I

S
S

I
P
P

S
S

I
P
P
I

u

v

Figure 1.2 The suffix tree for the string “MISSISSIPPI$”.

McCreight’s linear time suffix tree construction algorithm [34] is perhaps one of the most

popular and most implemented linear time algorithms. It constructs the final suffix tree by

incrementally inserting the suffixes one by one. Let T be a string of size n.

1. The first suffix T1 is inserted into an empty tree.

2. Suppose Ti was just inserted, and node u is the parent of the leaf node representing Ti.

If u has an suffix link, then it is used. Otherwise, the suffix link stored in u’s parent is

used. Let v be the node pointed by the suffix link.

3. From v travel down by only comparing the first character of the edge label with the

corresponding characters from suffix Ti+1, until the string depth is string depth of u

minus one.

4. From this position compare every character of the edge label with corresponding charac-

ters from suffix Ti+1.

www.manaraa.com

7

2 1

4

62 1

4

3

T

A

T

T

A

G

G

A

$

A
T
T
A
G
G
A
$

A
T

T
A

G

G

A

$

T

5

C
A
T
T
A
T
T
A
G
G
A
$

T
A
G
G
A
$

T

A
T
T
A
G
G
A
$

G

G

A

$

T

A

G

G

$

3

T

T
A

Go to parent

A
T

T
A

G

G

A

$

T

5

C
A
T
T
A
T
T
A
G
G
A
$

T
A
G
G
A
$

T Skip down

r r

u u

v v

w

Figure 1.3 Inserting a new suffix in the McCreight’s Algorithm.

5. Go downwards in the tree until either there is a mismatch in the edge, or the internal

node does not have a child with the appropriate first character.

• If there is a mismatch in the edge, a new node is inserted at that position and a new

leaf representing suffix Ti+1 is added. A suffix link is added from u to the newly

created node.

• If the internal node does not have a child with the appropriate first character a new

leaf is attached to the internal node.

6. Steps 2 to 5 are repeated until all suffixes are inserted into the tree.

Figure 1.3 shows the insertion of a new leaf during the construction of the suffix tree in

McCreight’s algorithm. It corresponds to Steps 2 through 5 in the above description.

In the last few years, there has been significant research on disk-based storage of suffix

trees for exploiting their utility on ever growing sequence databases. Many algorithms and

strategies have been proposed to reduce the number of disk accesses during the construction of

suffix trees [6, 7, 16, 22, 36]. Of these, only Farach et al. provided a construction algorithm for

www.manaraa.com

8

secondary storage that achieves the optimal worst case bound of Θ
(

n
B

logM

B

n
B

)

disk accesses

(where M is the size of main memory).

• In [6] the authors reduced the number of disk accesses by noticing that nodes near the

root are accessed more often. Thus they provided a buffering strategy that tries to keep

the nodes near the root in the main memory. Since the depth of a node is not always

known, the authors chose to use the string depth of a node as a predictor and show that

it works well for nodes near the root of the suffix tree.

• In [7] the authors use the fact that during suffix tree construction suffix links are used,

so two nodes linked by a suffix link will likely be accessed consecutively. Therefore, they

reduced the number of disk accesses by putting nodes that are linked by suffix links in

the same disk page.

• In [22] the authors abandon the linear time construction algorithms, because the use of

suffix links produces unpredictable disk access pattern. Instead the authors uses a naive

construction algorithm of the suffix tree which runs in O(n2) time.

• In [36] the authors first partition all the suffixes using k characters. This decreases the

number of suffixes need to be considered at once, thus reducing the space needed during

the construction. The subtree that contains all the suffixes that share the same first

k characters can than be constructed in memory. The authors also proposed memory

management procedures to further reduce the number of disk accesses needed.

While these algorithms and techniques focused on suffix tree construction in secondary

storage, the problems of searching and updating suffix trees (insertion/deletion of all suffixes

of a string) on disks have not received as much attention. An interesting solution is provided by

Clark and Munro [12] that achieves efficient space utilization. This is used to obtain a bound

on disk accesses for substring search as a function of the height of the tree. In the worst case,

the height of a suffix tree can be proportional to the length of the text indexed, although it is

rarely the case and Clark and Munro’s approach provides good experimental performance. To

www.manaraa.com

9

date, algorithms with provably good worst-case performance for substring searches and updates

for suffix trees in secondary storage are not known. To overcome these theoretical limitations,

Ferragina and Grossi have proposed the string B-tree data structure [17, 18]. String B-trees

provide the best known bounds for the worst-case number of disk access required for queries

and updates. It was not known if the same performance bounds can be achieved with suffix

trees, a problem that is resolved affirmatively in this thesis The unbalanced nature of suffix

trees appears to be a major obstacle to designing efficient disk-based algorithms.

1.3 Self-adjusting String Data Structures

Like most indexing structures, suffix trees are built with the intention that they will be

queried many times. Therefore, it is very important to devise algorithms that not only guaran-

tee the worst case performance of a single query, but also provide good performance for a large

sequence of queries collectively. In 1985, Sleator and Tarjan [35] created the self-adjusting

binary tree by using a “splay” process, and proved that it produces the optimal number of disk

accesses for a large sequence of queries. Since the publication of their ground breaking paper,

the splaying technique has received wide attention.

However, the splaying process involves promoting a node in the tree to be the new root of

the tree, and therefore is not suitable for suffix trees. Indeed, Sleator and Tarjan had left the

development of a self-adjusting data-structure for text data as an open question. This open

question has been partially resolved by Ciriani et al. [11], who provided a randomized algorithm

that achieves the optimal number of disk accesses with high probability. Their method utilizes

self-adjusting skip lists on top of a static suffix array. The problem of developing a deterministic

algorithm for static and dynamic texts remained open.

1.4 Contributions of this dissertation

In this thesis, we presenting a direct linear time algorithm for constructing suffix arrays over

integer alphabets [27, 29]. Contemporaneous to our result, Kärkkäinen et al. [24] and Kim et al.

[26] also discovered suffix array construction algorithms with linear time complexity. All three

www.manaraa.com

10

algorithms are very different and are important because they elucidate different properties of

strings, which could well be applicable for solving other problems. An important distinguishing

feature of our algorithm is that it uses only 8n bytes plus 1.25n bits for a fixed size alphabet.

Our algorithm is based on a unique recursive formulation where the subproblem size is not

fixed but is dependent on the properties of the string. Recently, Hon et al. [21] discovered a

linear time construction algorithm for compressed suffix array.

It is well known that the suffix tree of a string can be constructed from the sorted order of

its suffixes and the lcp array [15]. Because the lcp array can be inferred from the suffix array in

linear time [25], our algorithm can also be used to construct suffix trees in linear time for large

integer alphabets, and of course, for the special case of fixed size alphabets. Our algorithm

is simpler and more space efficient than Farach’s linear time algorithm for constructing suffix

trees for integer alphabets. In fact, it is simpler than linear time suffix tree construction

algorithms for fixed size alphabets [34, 37, 38]. A noteworthy feature of our algorithm is that

it does not construct or use suffix links, resulting in additional space advantage.

Secondly, we propose a new suffix tree layout scheme, and present algorithms with provably

good worst-case bounds on disk accesses required for search and update operations, while

maintaining our layout [30]. Let n denote the number of leaves in the suffix tree, and B denote

the size of a disk block. We provide algorithms that

• search for a pattern p in O(|p|/B + logB n) disk accesses,

• insert (all suffixes of) a string of length m in O(m logB(n + m)) disk accesses, and

• delete (all suffixes of) a string of length m in O(m logB n) disk accesses.

Since suffix tree construction can be achieved by starting from an empty tree and inserting

strings one after another, the number of disk accesses needed for suffix tree construction is

O(n logB n). Our results provide the same worst-case performance as string B-trees, thus

showing that suffix trees can be stored on disk and searched as efficiently as string B-trees.

Lastly, we resolve the open problem of developing a deterministic self-adjusting string

data structure with optimal number of I/O accesses by designing a self-adjusting suffix tree

layout that optimizes the total number of disk accesses for a sequence of queries. The main

www.manaraa.com

11

difficulty is that while a number of valid alternative topologies exist for binary search trees,

allowing continual adjustment suited to the flow of queries, the suffix tree topology is fixed

and unbalanced to begin with. We overcome this limitation by proposing a layout scheme that

creates a mapping of suffix tree nodes to disk blocks. While the tree topology remains fixed,

the mapping of the layout can be adjusted to the sequence of queries, producing the desired

performance bound. We begin with the layout scheme we proposed in [30], which balances the

number of disk accesses required for any root to leaf path. Besides being optimal for a large1

sequence of queries, our layout also have the following advantages:

1. We show that a “slow” moving promotion of the nodes works as well as the dramatic

promotion to the root, which is a radical departure from existing self-adjusting algorithms

and data structures, and can potentially be applied to develop more efficient “splaying”

heuristics.

2. In practice, the self-adjusting data structures do not perform as well as balanced trees

except in cases where a few of the leaves are accessed significantly more frequently than

others [8, 39]. Our layout scheme is balanced in its initial state, thus combining the

advantages of both types allows all the suffixes that share the same first k characters to

be of data structures.

3. Besides suffix trees, our scheme can also be used for PATRICIA trees and potentially

other data structures where the topology of the data structure cannot be altered.

4. Because of the topology of the suffix tree, our layout has the ability to reduce the number

of disk accesses needed for a set of non-identical queries that share the same prefix.

The rest of the dissertation is organized as follows. In Chapter 2 we describe in detail

our linear time suffix array construction algorithm for main memory and discuss briefly its

implementation. In Chapter 3 we describe a layout scheme for suffix trees in secondary storage

1A sequence of queries is considered to be “large” if the number of queries is greater than the number of
leaves in the suffix tree.

www.manaraa.com

12

and analyze its performance in terms of number of disk accesses. We also present a self-

adjusting variant of the layout scheme in Chapter 4, and we show that it is optimal for a

large sequence of queries. Chapter 5 concludes the dissertation with some directions for future

research.

www.manaraa.com

13

CHAPTER 2. LINEAR TIME SUFFIX ARRAY CONSTRUCTION

Consider a string T = t1t2 . . . tn over the alphabet Σ = {1 . . . n}. Without loss of generality,

assume the last character of T occurs nowhere else in T , and is the lexicographically smallest

character. We denote this character by ‘$’. Let Ti = titi+1 . . . tn denote the suffix of T starting

with ti. To store the suffix Ti, we only store the starting position number i. For strings α and

β, we use α ≺ β to denote that α is lexicographically smaller than β. Throughout this paper

the term sorted order refers to lexicographically ascending order.

A high level overview of our algorithm is as follows: We classify the suffixes into two types,

S and L. Suffix Ti is of type S if Ti ≺ Ti+1, and is of type L if Ti+1 ≺ Ti. The last suffix Tn

does not have a next suffix, and is classified as both type S and type L. The positions of the

type S suffixes in T partitions the string into a set of substrings. We substitute each of these

substrings by its rank among all the substrings and produce a new string T ′. This new string

is then recursively sorted. The suffix array of T ′ gives the lexicographic order of all type S

suffixes. Then the lexicographic order of all suffixes can be deduced from this order.

We now present complete details of our algorithm. The following lemma allows easy iden-

tification of type S and type L suffixes in linear time.

Lemma 2.0.1 All suffixes of T can be classified as either type S or type L in O(n) time.

Proof Consider a suffix Ti (i < n).

Case 1: If ti 6= ti+1, we only need to compare ti and ti+1 to determine if Ti is of type S or

type L.

Case 2: If ti = ti+1, find the smallest j > i such that tj 6= ti.

if tj > ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type S.

www.manaraa.com

14

I S S I S S I P P I $MT

S L L S SL L L L L L/SLType

2 3 4 5 6 7 8 91 121110Pos

Figure 2.1 The string “MISSISSIPPI$” and the types of its suffixes.

if tj < ti, then suffixes Ti, Ti+1, . . . , Tj−1 are of type L.

Thus, all suffixes can be classified using a left to right scan of T in O(n) time. �

The type of each suffix of the string MISSISSIPPI$ is shown in Figure 2.1. An important

property of type S and type L suffixes is, if a type S suffix and a type L suffix both begin

with the same character, the type S suffix is always lexicographically greater than the type L

suffix. The formal proof is presented below.

Lemma 2.0.2 A type S suffix is lexicographically greater than a type L suffix that begins with

the same first character.

Proof Suppose a type S suffix Ti and a type L suffix Tj are two suffixes that start with the

same character c. We can write Ti = ckc1α and Tj = clc2β, where ck and cl denotes the

character c repeated for k, l > 0 times, respectively; c1 > c, c2 < c; α and β are (possibly

empty) strings.

Case 1: If k < l then c1 is compared to a character c in cl. Then c1 > c⇒ Tj ≺ Ti.

Case 2: If k > l then c2 is compared to a character c in ck. Then c > c2 ⇒ Tj ≺ Ti.

Case 3: If k = l then c1 is compared to c2. Since c1 > c and c > c2, then c1 > c2 ⇒ Tj ≺ Ti.

Thus a type S suffix is lexicographically greater than a type L suffix that begins with the same

first character. �

Corollary 2.0.3 In the suffix array of T , among all suffixes that start with the same character,

the type S suffixes appear after the type L suffixes.

www.manaraa.com

15

Proof Follows directly from Lemma 2.0.2. �

Let A be an array containing all suffixes of T , not necessarily in sorted order. Let B be

an array of all suffixes of type S, sorted in lexicographic order. Using B, we can compute the

lexicographically sorted order of all suffixes of T as follows:

1. Bucket all suffixes of T according to their first character in array A. Each bucket consists

of all suffixes that start with the same character. This step takes O(n) time.

2. Scan B from right to left. For each suffix encountered in the scan, move the suffix to the

current end of its bucket in A, and advance the current end by one position to the left.

More specifically, the move of a suffix in array A to a new position should be taken as

swapping the suffix with the suffix currently occupying the new position. After the scan

of B is completed, by Corollary 2.0.3, all type S suffixes are in their correct positions in

A. The time taken is O(|B|), which is bounded by O(n).

3. Scan A from left to right. For each entry A[i], if TA[i]−1 is a type L suffix, move it to the

current front of its bucket in A, and advance the front of the bucket by one. This takes

O(n) time. At the end of this step, A contains all suffixes of T in sorted order.

In Figure 2.2, the suffix pointed by the arrow is moved to the current front of its bucket

when the scan reaches the suffix at the origin of the arrow. The following lemma proves the

correctness of the procedure in Step 3.

Lemma 2.0.4 In step 3, when the scan reaches A[i], then suffix TA[i] is already in its sorted

position in A.

Proof By induction on i. To begin with, the smallest suffix in T must be of type S and hence

in its correct position A[1]. By inductive hypothesis, assume that A[1], A[2], . . . , A[i] are the

first i suffixes in sorted order. We now show that when the scan reaches A[i + 1], then the

suffix in it, i.e., TA[i+1] is already in its sorted position. Suppose not. Then there exists a suffix

referenced by A[k] (k > i + 1) that should be in A[i + 1] in sorted order, i.e., TA[k] ≺ TA[i+1].

www.manaraa.com

16

8 5 212

12

12 8 5 211 1 9 10 3 4 6 7

11 8 5 2 1 10 9 7 4 6 3

T

1 2 3 4 5 6 7 8 9

M I S S I S S I P P I

10 11

S SType

Pos

S

Bucket

Order Of Type S suffixes

Sorted Order

After Step 2

$

S

12

$ I M P S

Figure 2.2 Illustration of how to obtain the sorted order of all suffixes, from

the sorted order of type S suffixes of the string MISSISSIPPI$.

As all type S suffixes are already in correct positions, both TA[k] and TA[i+1] must be of type

L. Because A is bucketed by the first character of the suffixes prior to step 3, and a suffix

is never moved out of its bucket, TA[k] and TA[i+1] must begin with the same character, say

c. Let TA[i+1] = cα and TA[k] = cβ. Since TA[k] is type L, β ≺ TA[k]. From TA[k] ≺ TA[i+1],

β ≺ α. Since β ≺ TA[k], and the correct sorted position of TA[k] is A[i + 1], β must occur in

A[1] . . . A[i]. Because β ≺ α, TA[k] should have been moved to the current front of its bucket

before TA[i+1]. Thus, TA[k] can not occur to the right of TA[i+1], a contradiction. �

So far, we showed that if all type S suffixes are sorted, then the sorted position of all

suffixes of T can be determined in O(n) time. In a similar manner, the sorted position of all

suffixes of T can also be determined from the sorted order of all suffixes of type L. To do this,

we bucket all suffixes of T based on their first characters into an array A. We then scan the

sorted order of type L suffixes from left to right and determine their correct positions in A by

moving them to the current front of their respective buckets. We then can A from right to left

and when A[i] is encountered, if TA[i]−1 is of type S, it will be moved to the current en of its

bucket.

Once the suffixes of T are classified into type S and type L, we choose to sort those type

www.manaraa.com

17

of suffixes which are fewer in number. Without loss of generality, assume that type S suffixes

are fewer. We now show how to recursively sort these suffixes.

Define position i of T to be a type S position if the suffix Ti is of type S, and similarly

to be a type L position if the suffix Ti is of type L. The substring ti . . . tj is called a type S

substring if both i and j are type S positions, and every position between i and j is a type L

position.

Our goal is to sort all the type S suffixes in T . To do this we first sort all the type S

substrings. The sorting generates buckets where all the substrings in a bucket are identical.

The buckets are numbered using consecutive integers starting from 1. We then generate a

new string T ′ as follows: Scan T from left to right and for each type S position in T , write

the bucket number of the type S substring starting from that position. This string of bucket

numbers forms T ′. Observe that each type S suffix in T naturally corresponds to a suffix in

the new string T ′. In Lemma 2.0.5, we prove that sorting all type S suffixes of T is equivalent

to sorting all suffixes of T ′. We sort T ′ recursively.

We first show how to sort all the type S substrings in O(n) time. Consider the array

A, consisting of all suffixes of T bucketed according to their first characters. For each suffix

Ti, define its S-distance to be the distance from its starting position i to the nearest type S

position to its left (excluding position i). If no type S position exists to the left, the S-distance

is defined to be 0. Thus, for each suffix starting on or before the first type S position in T , its

S-distance is 0. The type S substrings are sorted as follows (illustrated in Figure 2.3):

1. For each suffix in A, determine its S-distance. This is done by scanning T from left

to right, keeping track of the distance from the current position to the nearest type S

position to the left. While at position i, the S-distance of Ti is known and this distance is

recorded in array Dist. The S-distance of Ti is stored in Dist[i]. Hence, the S-distances

for all suffixes can be recorded in linear time.

2. Let m be the largest S-distance. Create m lists such that list j (1 ≤ j ≤ m) contains all

the suffixes with an S-distance of j, listed in the order in which they appear in array A.

www.manaraa.com

18

I S S I S S I P P I $MT
Type S S S S

12 2 5 8
2 5 8 11 1 9 10 3 76412
2 3 4 5 6 7 8 9 1211101Pos

Dist 0 0 1 2 3 1 2 3 1 2 3 4
Pos 2 3 4 5 6 7 8 9 121 10 11

9 3 61

10 4 72

5 1183

4 12

Step 2. Construct S−distance Lists

12 8 2 5

12 8 2 5

12 8 2 5

12 8 2 5

Step 3. Sort all type S substrings
Original

Sort according to list 1

Sort according to list 2

A

Step 1. Record the S−distances

Sort according to list 3

Sort according to list 4

Figure 2.3 Illustration of the sorting of type S substrings of the string

MISSISSIPPI$.

This can be done by scanning A from left to right in linear time, referring to Dist[A[i]]

to put TA[i] in the correct list.

3. We now sort the type S substrings using the lists created above. The sorting is done by

repeated bucketing using one character at a time. To begin with, the bucketing based

on first character is determined by the order in which type S suffixes appear in array A.

Suppose the type S substrings are bucketed according to their first j − 1 characters. To

extend this to j characters, we scan list j. For each suffix Ti encountered in the scan

of a bucket of list j, move the type S substring starting at ti−j to the current front of

its bucket, then move the current front to the right by one. After a bucket of list j is

scanned, new bucket boundaries need to be drawn between all the type S substrings that

have been moved, and the type S substrings that have not been moved. Because the

total size of all the lists is O(n), the sorting of type S substrings only takes O(n) time.

The sorting of type S substrings using the above algorithm respects lexicographic ordering

of type S substrings, with the following important exception: If a type S substring is the

prefix of another type S substring, the bucket number assigned to the shorter substring will

www.manaraa.com

19

be larger than the bucket number assigned to the larger substring. This anomaly is designed

on purpose, and is exploited later in Lemma 2.0.5.

As mentioned before, we now construct a new string T ′ corresponding to all type S sub-

strings in T . Each type S substring is replaced by its bucket number and T ′ is the sequence of

bucket numbers in the order in which the type S substrings appear in T . Because every type S

suffix in T starts with a type S substring, there is a natural one-to-one correspondence between

type S suffixes of T and all suffixes of T ′. Let Ti be a suffix of T and T ′
i′ be its corresponding

suffix in T ′. Note that T ′
i′ can be obtained from Ti by replacing every type S substring in

Ti with its corresponding bucket number. Similarly, Ti can be obtained from T ′
i′ by replacing

each bucket number with the corresponding substring and removing the duplicate instance of

the common character shared by two consecutive type S substrings. This is because the last

character of a type S substring is also the first character of the next type S substring along T .

Lemma 2.0.5 Let Ti and Tj be two suffixes of T and let T ′
i′ and T ′

j′ be the corresponding

suffixes of T ′. Then, Ti ≺ Tj ⇔ T ′
i′ ≺ T ′

j′.

Proof We first show that T ′
i′ ≺ T ′

j′ ⇒ Ti ≺ Tj . The prefixes of Ti and Tj corresponding to

the longest common prefix of T ′
i′ and T ′

j′ must be identical. This is because if two bucket

numbers are the same, then the corresponding substrings must be the same. Consider the

leftmost position in which T ′
i′ and T ′

j′ differ. Such a position exists and the characters (bucket

numbers) of T ′
i′ and T ′

j′ in that position determine which of T ′
i′ and T ′

j′ is lexicographically

smaller. Let k be the bucket number in T ′
i′ and l be the bucket number in T ′

j′ at that position.

Since T ′
i′ ≺ T ′

j′ , it is clear that k < l. Let α be the substring corresponding to k and β be the

substring corresponding to l. Note that α and β can be of different lengths, but α cannot be

a proper prefix of β. This is because the bucket number corresponding to the prefix must be

larger, but we know that k < l.

Case 1: β is not a prefix of α. In this case, k < l⇒ α ≺ β, which implies Ti ≺ Tj.

Case 2: β is a proper prefix of α. Let the last character of β be c. The corresponding position

in T is a type S position. The position of the corresponding c in α must be a type L

www.manaraa.com

20

position.

Since the two suffixes that begin at these positions start with the same character, by

Corollary 2.0.3, the type L suffix must be lexicographically smaller then the type S

suffix. Thus, Ti ≺ Tj .

From the one-to-one correspondence between the suffixes of T ′ and the type S suffixes of T , it

also follows that Ti ≺ Tj ⇒ T ′
i′ ≺ T ′

j′ . �

Corollary 2.0.6 The sorted order of the suffixes of T ′ determines the sorted order of the type

S suffixes of T .

Proof Let T ′
i′
1

, T ′
i′
2

, T ′
i′
3

, . . . be the sorted order of suffixes of T ′. Let

Ti1 , Ti2 , Ti3 , . . . be the sequence obtained by replacing each suffix T ′
i′
k

with the corresponding

type S suffix Tik . Then, Ti1 , Ti2 , Ti3 , . . . is the sorted order of type S suffixes of T . The proof

follows directly from Lemma 2.0.5. �

Hence, the problem of sorting the type S suffixes of T reduces to the problem of sorting all

suffixes of T ′. Note that the characters of T ′ are consecutive integers starting from 1. Hence

our suffix sorting algorithm can be recursively applied to T ′.

If the string T has fewer type L suffixes than type S suffixes, the type L suffixes are sorted

using a similar procedure − Call the substring ti, . . . , tj a type L substring if both i and j are

type L positions, and every position between i and j is a type S position. Now sort all the

type L substrings and construct the corresponding string T ′ obtained by replacing each type

L substring with its bucket number. Sorting T ′ gives the sorted order of type L suffixes.

Thus, the problem of sorting the suffixes of a string T of length n can be reduced to the

problem of sorting the suffixes of a string T ′ of size at most ⌈n2 ⌉, and O(n) additional work.

This leads to the recurrence

T (n) = T
(⌈n

2

⌉)

+ O(n)

Theorem 2.0.7 The suffixes of a string of length n can be lexicographically sorted in O(n)

time and space.

www.manaraa.com

21

2.1 Space Requirement

We now consider the space requirement of our suffix array construction algorithm. The

algorithm can be decomposed into the following parts:

1. Classifying the types of all suffixes.

2. Sorting all suffixes according to their first character.

3. Constructing m lists according to the S-distance of each suffix, and the sorted order of

their first character.

4. Sorting all type S substrings by repeated bucketing using the m lists.

5. Constructing a new string T ′ according to the bucket numbers of type S substrings.

6. Recursively applying our algorithm, and obtaining the sorted order of type S suffixes.

7. Constructing the suffix array from the sorted order of all type S suffixes.

Except for Step 4, the calculation of space requirement for each of the steps listed above

is straightforward, and offers little room for improvement by using a more efficient imple-

mentation. Therefore we limit the focus of our analysis to efficient implementation of Step

4.

As mentioned previously, the sorting of all type S substrings is done by repeated bucketing

using one character at a time. Suppose the type S substrings are bucketed according to their

first j − 1 characters. To extend this to j characters, we scan list j. For each suffix Ti

encountered, move the type S substring starting at ti−j to the current front of its bucket and

advance the current front by one.

In Manber and Myers’ algorithm [33], the suffixes are also moved to the front of their

respective buckets in each iteration. However, their space-efficient scheme does not apply

to our algorithm because every suffix will be moved at most once in each iteration of their

algorithm. On the other hand, a type S substring may be moved multiple times in each

www.manaraa.com

22

recursion step of our algorithm. In order to achieve O(n) runtime, we must be able to locate

the current front of the bucket containing a given type S substring in constant time.

Let array C be an array containing all type S substrings, bucketed according to their first

characters. A type S substring is denoted by its starting position in T . Array C can be

generated by copying from array A computed in Step 2. Let R be an array of size n, such that

if C[i] = j, then R[j] = k where k is the position of the end of the bucket containing j. R can

be constructed by a right to left scan of C. Let lptr be an array of the same size as C, such

that if i is the last position of a bucket in C, then lptr[i] = j where j is the current front of

that bucket. For all other positions k, lptr[k] = −1.

Each of the m lists is itself bucketed according to the first character of the suffixes. As

previously mentioned, for each suffix Ti encountered in the scan of a bucket in list j, type S

substring starting at ti−j is moved to the current front of its bucket. The bucket containing

ti−j can be found by referring to R[i− j], and the current front of its bucket can then be found

by referring to lptr[R[i − j]]. The current front is advanced by incrementing lptr[R[i − j]].

Note that the effect of moving a type S substring starting at ti−j is achieved by adjusting the

values of R[i− j] and lptr[R[i− j]] instead of actually moving it in C.

After scanning an entire bucket of list j, all the elements of C that have been moved should

be in a new bucket in front of their old bucket. To accomplish this, we note that the lptr at

the end of each old bucket in C is pointing to the current front of the old bucket, which is

immediately next to the last element of the new bucket. Thus the bucket of list j is scanned

again. For suffix Ti encountered in the scan, type S substring starting at ti−j is moved into

the new bucket by first setting R[i− j] = lptr[R[i− j]]− 1, then we set lptr[R[i− j]] = R[i− j]

if lptr[R[i− j]] = −1 or decrement lptr[R[i− j]] by one otherwise.

It is easy to see that all the values of R and lptr are set correctly at the end of the second

scan. The amount of work done in this step is proportional to the size of all the m lists, which

is O(n). Two integer arrays of size n and two integer arrays of size at most
⌈

n
2

⌉

are used.

Assuming each integer representation takes 4 bytes of space, the total space used in this step

is 12n bytes. Note that it is not necessary to actually move the type S substrings in C as the

www.manaraa.com

23

final positions of type S substrings after sorting can be deduced from R. In fact, we construct

T ′ directly using R. Array C is only needed to initialize R and lptr. We can initialize R from

C, then discard C, and initialize lptr from R, thus further reducing the space usage to 10n

bytes. However, this reduction is not necessary as construction of m lists in Step 3 requires

12n bytes, making it the most space-expensive step of the algorithm.

To construct the m lists, we use a stable counting sort on A using the S-distance as the

key. The total amount of space used in this part of the algorithm is 3 integer arrays - one

for A, one for the m lists, and a temporary array. The fact that we discard almost all arrays

before the next recursion step of our algorithm except the strings, and that each subsequent

step uses only half the space used in the previous step, makes the construction of the m lists

in the first iteration the most space consuming stage of our algorithm.

It is possible to derive an implementation of our algorithm that uses only three integer

arrays of size n and three boolean arrays1 (two of size n and one of size ⌈n2 ⌉). The space

requirement of our algorithm is 12n bytes plus 3
2n bits. This compares favorably with the

best space-efficient implementations of linear time suffix tree construction algorithms, which

still require 20n bytes [4]. Hence, direct linear time construction of suffix arrays using our

algorithm is more space-efficient.

In case the alphabet size is constant, it is possible to further reduce the space requirement

by eliminating the calculation of the m lists in the first iteration. This is possible because the

type S substrings can be sorted character by character as individual strings in O(n) time if

the alphabet size is constant. This reduces the space required to only 8n bytes plus 0.5n bits

for the first iteration. Note that this idea cannot be used in subsequent iterations because the

string T ′ to be worked on in the subsequent iterations will still be based on integer alphabet.

So we resort to the traditional implementation for this and all subsequent iterations. As a

result, the space requirement for the complete execution of the algorithm can be reduced to 8n

bytes plus 1.25n bits. This is competitive with Manber and Myers’ O(n log n) time algorithm

for suffix array construction [33], which requires only 8n bytes. In many practical applications,

1The boolean arrays are used to mark bucket boundaries, and to denote the type of each suffix.

www.manaraa.com

24

the size of the alphabet is a small constant. For instance, computational biology applications

deal with DNA and protein sequences, which have alphabet sizes of 4 and 20, respectively.

2.2 Reducing the Size of T
′

In this section, we present an implementation strategy to further reduce the size of T ′.

Consider the result of sorting all type S substrings of T . Note that a type S substring is a

prefix of the corresponding type S suffix. Thus, sorting type S substrings is equivalent to

bucketing type S suffixes based on their respective type S substring prefixes. The bucketing

conforms to the lexicographic ordering of type S suffixes. The purpose of forming T ′ and

sorting its suffixes is to determine the sorted order of type S suffixes that fall into the same

bucket. If a bucket contains only one type S substring, the position of the corresponding type

S suffix in the sorted order is already known.

Let T ′ = b1b2 . . . bm. Consider a maximal substring bi . . . bj (j < m) such that each bk (i ≤

k ≤ j) contains only one type S substring. We can shorten T ′ by replacing each such maximal

substring bi . . . bj with its first character bi. Since j < m the bucket number corresponding to

‘$’ is never dropped, and this is needed for subsequent iterations. It is easy to directly compute

the shortened version of T ′, instead of first computing T ′ and then shortening it. Shortening

T ′ will have the effect of eliminating some of the suffixes of T ′, and also modifying each suffix

that contains a substring that is shortened. We already noted that the final positions of the

eliminated suffixes are already known. It remains to be shown that the sorted order of other

suffixes are not affected by the shortening.

Consider any two suffixes T ′
k = bk . . . bm and T ′

l = bl . . . bm, such that at least one of the

suffixes contains a substring that is shortened. Let j ≥ 0 be the smallest integer such that

either bk+j or bl+j (or both) is the beginning of a shortened substring. The first character of

a shortened substring corresponds to a bucket containing only one type S substring. Hence,

the bucket number occurs nowhere else in T ′. Therefore bk+j 6= bl+j, and the sorted order

of bk . . . bm and bl . . . bm is determined by the sorted order of bk . . . bk+j and bl . . . bl+j. In

other words, the comparison of any two suffixes never extends beyond the first character of a

www.manaraa.com

25

Table 2.1 Algorithms and their descriptions.

Name Description

Manber and Myers Manber and Myers’ original algorithm [33].

Sadakane Larsson and Sadakane’s algorithm [32].

Two-stage suffix sort Itoh and Tanaka’s two-stage suffix sorting algorithm

[23].

Multikey Quicksort Sorting suffixes as individual strings using ternary

Quicksort [10].

Our algorithm The algorithm presented in this paper.

shortened substring.

2.3 Related Work

In this section we compare our algorithm with some of the other suffix array construction

algorithms. Since the introduction of suffix array by Manber and Myers [33], several algorithms

for suffix array construction have been developed. Some of these algorithms are aimed at

reducing the space usage, while others are aimed at reducing the runtime. Table 2.3 contains

the names and descriptions of the algorithms used in our comparison. Table 2.3 lists the

space requirement, time complexity, and restrictions on alphabet size. It is immediately clear

that space is sacrificed for better time complexity. We also note that for the case of constant

size alphabet, our algorithm has a better runtime, while maintaining similar memory usage

compared to algorithms by Manber and Myers [33], and Larsson and Sadakane [32]. Kurtz

[31] has developed a space-efficient way of constructing and storing suffix trees. Although on

average it only uses 10.1 bytes per input character, it has a worst case of 20 bytes per input

character. Indeed, some of the techniques used in his implementation can be applied to our

algorithm as well, and this will lead to further reduction of space in practice.

Note that we have not included a comparison of the space required by other linear time

algorithms [24, 26] in Table 2.3. To achieve optimal space usage for our algorithm, it is very

important that implementation techniques outlined in Section 3 are properly utilized. Due to

the recent discovery of these results, a thorough space analysis of the other two linear time

www.manaraa.com

26

Table 2.2 Comparison of different algorithms.

Algorithm Space (bytes) Time Complexity Alphabet Size

Manber and Myers 8n O(n log n) Arbitrary

Sadakane 8n O(n log n) Arbitrary

Two-stage suffix sort 4n O(n2) 1 . . . n

Two-stage suffix sort 4n O(n2 log n) Arbitrary

Multikey Quicksort 4n O(n2 log n) Arbitrary

Our algorithm 12n O(n) 1 . . . n

Our algorithm 8n O(n) Constant

algorithms is not yet available in the published literature. Our analysis indicates that our space

requirement would be lower than the space required by Park et al.’s algorithm [26] and is the

same as the space required for Kärkkäinen and Sanders’ algorithm [24]. All three algorithms

depend on recursively reducing the problem size - to half the original size for Park et al.’s

algorithm, to two thirds of the original size for Kärkkäinen and Sanders’ algorithm, and to

at most half the original size for our algorithm. The worst-case of reducing the problem size

to only half will be realized when the number of type S and type L suffixes are the same.

This, coupled with the reduction technique presented in Section 4, will significantly reduce the

number of levels of recursion required. For example, in an experiment to build a suffix array

on the genome of E. Coli which is approximately 4 million base pairs (characters) long, we

found the number of levels of recursion required is only 8 compared to the 22 that would be

required by recursively halving.

www.manaraa.com

27

CHAPTER 3. SUFFIX TREE DISK LAYOUT

Consider a set S of strings with total length n. Without loss of generality, we assume that

all characters are drawn from the alphabet Σ, except for the last character each string, which

a special characters $ 6∈ Σ. Let s ∈ S be a string of length m. We use s[i] to denote the i-th

character of s, where 1 ≤ i ≤ m, and let s[i..j] denote the substring s[i]s[i + 1] . . . s[j], where

1 ≤ i < j ≤ m. The i-th suffix of s, s[i..m], is denoted by si. The suffix tree of the set of

strings S, abbreviated ST (S), is a compacted trie of all suffixes of all strings in S. The term

generalized suffix tree is commonly used when dealing with multiple strings, while the term

suffix tree is usually used when dealing with a single string. For convenience, we use the term

suffix tree to denote either case.

3.1 Static Layout

For a node v in ST (S), the string depth of v is the total length of all edge labels on the

path from the root to v. The size of a subtree whose root is node v is the total number of

leaves in that subtree, and is referred to as size(v). If v is a leaf node then size(v) = 1. The

rank of a node v, denoted rank(v), is i if and only if Ci ≤ size(v) < Ci+1, for some integer

constant C > 1 of choice. Nodes u and v belong to the same partition if all nodes on the

undirected path between u and v have the same rank. It is easy to see that the entire suffix

tree is partitioned into disjoint parts. Figure 3.1(a) shows an example of a suffix tree, and one

of its partitions.

The rank of a partition P is the same as the rank of the nodes in P, i.e. rank(P) = rank(v)

for any v in P. Node v in P is a leaf of P if and only if none of v’s children in ST (S) is in

P. Node u is termed the root of P if and only if u’s parent is not a node in P. Nodes with

www.manaraa.com

28

A

T

T

A
T

T
A

G

G

C G

A
$

G
G
A
$

T

A T
A

A
$

G
G T

A
G

$
A
G

T
A
$

G
G T

A
G

$
A
G

T

A

$

G

G
A

$

T
T

A

G

G
A

$

T
T
A
G
G
A
$

w

v

A
$

u

(a)

A T
G

G T A T

v

u

w

(b)

Figure 3.1 (a) The suffix tree of the string CATTATTAGGA$. The nodes

of an example partition are drawn as concentric circles. Brach-

ing nodes of the partition are labeled as u, v, w. (b) The skele-

ton partition tree of the example partition.

concentric circles in Figure 3.1(a) are belong to an example partition. Node u in P is called

a branching node if two or more of its children in ST (S) are also in P. All other nodes are

referred to as non-branching nodes. From Figure 3.1(a) we see that a partition need not be

a compacted trie. For each partition P, a compacted trie is constructed containing the root

of P (which may not be a branching node), all the branching nodes and all the leaves. This

resulting compacted trie is referred to as the skeleton partition tree of P, or TP , Figure 3.1(b)

show the corresponding skeleton partition tree of the partition in Figure 3.1(a).

While the number of nodes in any partition P could be as large as Crank(P)+1 − Crank(P),

which depends on rank(P), the size of its skeleton partition tree TP is O(C) independent of

rank(P). First we show that the number of leaves of the partition is limited, then we used the

fact that the skeleton partition tree is a compacted tries to show that the number of nodes in

it is bounded by C rather than rank(P).

Lemma 3.1.1 There are at most C − 1 leaves in a partition.

Proof Let P be a partition that has C ′ ≥ C leaves, and node u be its root. Since size(u) ≥

Ci · C ′ ≥ Ci · C = Ci+1, rank(u) > rank(P), a contradiction. �

www.manaraa.com

29

Figure 3.2 Two valid decompositions of the same partition. In each figure,

solid edge between two nodes represents that they belong to the

same component, while dashed lines means they belong to two

different components.

Lemma 3.1.2 For a partition P, the number of nodes in TP is at most 2C − 2.

Proof By Lemma 3.1.1 there are at most C− 1 leaf nodes in a skeleton partition tree. There-

fore, there can be at most C − 2 branching nodes. In addition, the root node may not

be a branching node. So the total number of nodes in a skeleton partition tree is at most

2C − 2 = O(C). �

Since the size of the skeleton partition tree of a partition P is independent of rank(P), an

appropriate C can be chosen so TP can be stored in one or a constant number of disk blocks.

However, the number of nodes in P may be large and cannot be stored in one single disk

block. Therefore, it is decomposed into multiple components and each of the component can

be stored in segments across multiple disk blocks.

A component of a partition P consists of all the nodes on a path between a node v and a

leaf of the partition. A valid decomposition of a partition P is a partitioning of all P’s nodes

into disjoint components. For any given partition, there could be many valid decompositions.

Figure 3.2 shows two valid decompositions of the same partition.

www.manaraa.com

30

By the definition of a partition P, and its skeleton partition tree TP . Every node u ∈ TP

has a corresponding copy of itself in a component of P. We refer to the copy of u in TP be

uTP , and the copy of u in one of the components P as uP . For a non-branching node v that is

neither the root nor a leaf of its partition, there is only one copy of v in one of the components

of P, we denote it as vP to be consistent. Note that if two partitions P and Q are being

mentioned simultaneously, then nodes from P will be denoted as uTP or uP , while nodes from

Q will be denoted as uTQ or uQ. Since for every node uP it is also a node in the conceptual

suffix tree ST (S), we use u to denote the conceptual node u in the suffix tree. For example,

the children of u refers to all the children of the node u in the suffix tree, regardless whether

they are in the same partition. This notation is also applicable for all nodes uTP .

In order to facilitate various tree operation, the following information is store in each node

vTP of the skeleton partition tree:

1. The string depth of vTP .

2. A pointer to the parent of vTP in TP . If vTP is the root of the partition, then it points to

the parent of vP , uQ
1.

3. A pointer to vP in one of the components of P, i.e. the copy of itself in a component of

P.

4. A representative suffix si if vTP is a leaf of the partition, where si is a suffix represented

by one of the leaves in the suffix tree under v.

5. For each child uTP of vTP in TP store in vTP

(a) A pointer to uTP .

(b) The leading character of the first edge label on the path from v to u.

(c) A pointer to wP , where wP is the child of vP and the ancestor of uP , i.e. wP is the

first node on the path from vP to uP .

1Note that if vTP
is the root of the partition, then its parent pointer points to a location on disk where the

actually location of the parent uQ is stored. This way when the physical location of uQ is changed, only one
disk access to this location is needed to modify the “parent pointers” of all its children. For simplicity and
consistency we refer this two-pointer combination as the parent pointer.

www.manaraa.com

31

For each node vP of the partition, the following information is stored:

1. The string depth of vP .

2. A pointer to the next node in the component. By the definition of a component, there

is only one such node.

3. A pointer to the leaf 2 of the component wTP , note that the pointer points to the copy

of the leaf in TP .

4. For each child uTQ that is not in the same partition store in vP

(a) A pointer to uTQ , note that uTQ is the root of Q.

(b) The leading character of the edge label between v and u.

3.2 Substring Search

Given a pattern p and the suffix tree for a set of strings S, the substring matching problem

is to locate a position i and a string s ∈ S such that s[i..i+ |p|−1] = p where |p| is the length of

p, or conclude that it is impossible to find such a match. In a suffix tree we match p character

by character with edge labels of the suffix tree until we can proceed no longer, or until all p’s

characters have been exhausted in which case a match is found.

To search for a pattern p in a suffix tree with our proposed layout, a top-down traversal

is used similar to the one used in substring search in normal suffix tree. The search begins

with the partition containing the root of the suffix tree. For each partition P encountered, the

ultimate goal is to identify the node in P, where one of its children is the root of the correct

next partition in the traversal. We refer to this node as the exit node of P, denoted as exitP .

If such an exit node cannot be found then there is no substring that matches the pattern p.

In order to locate exitP , its closest ancestor vTP in TP is first located, i.e. exitP lies on

the path between vTP and one of its children in TP , or it is vP itself. To achieve this, an

over-matched descendant of vTP , wTP is located. Then the representative suffix stored with

2Like the parent pointer of the root of a partition. This pointer actually points to a location with another
pointer pointing to the actual location of the leaf.

www.manaraa.com

32

one of the leaves under wTP in TP is used to compare with the pattern p. The number of

matched characters is used to identify vTP . This process works, because in order for exitP

to be a descendant of vP , vTP must have a string depth less than or equal to the number of

matched characters.

The to find the aforementioned over-matched node wTP , we use an algorithm that compare

only the leading character of the path between two nodes in TP . The algorithm takes three

inputs, TP is the skeleton partition tree where wTP is to be located; max depth is used to

limit the maximum string depth of wTP ; and the pattern p being matched. The detail of this

algorithm can be found in Algorithm 1.

Algorithm 1 Compare and Skip(TP , max depth, p)

1: Load TP into memory

2: wTP ← root of TP

3: ℓw ← string depth of root of TP

4: if ℓw < max depth then

5: return null

6: end if

7: continue← true

8: while continue do

9: continue← false

10: if one of wTP ’s children uTP whose leading character is p[ℓw + 1] then

11: if String depth of uTP ≤ max depth then

12: vTP ← uTP

13: ℓv ← string depth of uTP continue← true

14: end if

15: end if

16: end while

17: return wTP

www.manaraa.com

33

Since only the leading character of the path between two nodes in the skeleton partition

tree TP is compared with corresponding character from the pattern p, it is possible that an

mismatch exists on the path ending at the resulting node wTP . To check for this possibility,

the representative suffix associated with one of the leaves in TP under wTP is compared with

the corresponding characters of p. The number of characters matched during the comparison

is used to identify vTP – the closest ancestor of exitP in TP . Algorithm 2 gives a detailed

description of how to locate vTP , it takes three inputs the skeleton partition tree TP ; ℓ, the

number of character of p matched so far; and the pattern p. The output of the algorithm is the

node vTP (if it exists) and ℓ, the number of character of p matched at the end of the algorithm.

Algorithm 2 Locate Nearest Ancestor(TP , ℓ, p)

1: vTP ← Compare and Skip(TP , ∞, p)

2: ℓv ← string depth of vTP

3: Load the representative suffix of a leaf in TP under vTP , say si

4: ℓm ← # of matches between s[i + ℓ + 1 . . . i + ℓv] and p[ℓ + 1 . . . ℓv]

5: ℓ← ℓ + ℓm

6: return (Compare and Skip(TP , ℓ, p), ℓ)

After Algorithm 2 one of the following cases is true.

1. Algorithm 2 returns null; this situation happens if and only if the total number of

characters matched with p is less than the string depth of the root of the partition P. If

p is exhausted at this point then a match is found between the root of the partition and

its parent in the suffix tree, otherwise no match is possible.

2. If a node vTP is found, and the string depth of vTP is the same as ℓ, then either vP is a

match (if p is exhausted) or vP is exitP . If p is not exhausted, then vP is exitP and use

the pointer stored in vTP to locate vP , and find an appropriate child to continue, i.e. use

p[ℓ+1] and the leading character of the children to find the appropriate child, and repeat

www.manaraa.com

34

the algorithm with the partition containing that child. If none of the leading character

of the children matches p[ℓ + 1] then no match is possible.

3. If a node vTP is found, and the string depth of vTP is strictly less than ℓ, then one of

the children uTP of vTP whose leading character matches p[ℓ + 1]. This is because the

representative suffix from a leaf under uTP is used. The use the pointer to wP , where wP

is the child of vP and the ancestor of uP in the partition. Use the string depth stored in

each node in the component, and the leading character to the next node to traverse the

component. Suppose the search is at node wP ,

(a) If the string depth of wP is less than ℓ, then we move to the next node in the

component.

(b) If the string depth of wP is equal to ℓ, and one of the leading character on the edge

from wP to one of its children not in the same partition is the same as p[ℓ+1], then

use the pointer to that child to go to the next partition. If none of its children have

the correct leading character, then no match is found.

(c) If the string depth of wP is greater than ℓ, and p is exhausted then a match is found

between wP and its parent. Otherwise no match can be found.

Lemma 3.2.1 The substring search algorithm is correct, i.e. it identifies a node or a position

in an edge label where the concatenation of all the edge labels from the root to that node or

position is exactly p, or report that no match can be found.

Proof Suppose there is a match with the pattern p, and let uQ be the node where the con-

catenation of all the edge labels from the root to uQ is exactly p. Then there is a unique path

in the suffix tree that the searching algorithm must traverse in order to locate uQ. Let P be a

partition, such that this unique path pass through P. Let exitP be the deepest node in P on

the unique path, i.e. exitP is on the unique path but none of its children in the same partition

are on the same path. We show that the searching algorithm correctly identifies exitP .

Let vP be the closest descendant of exitP or exitP itself, such that there is a vTP . Line

1 of Algorithm 2 correctly locates a descendant of vTP in TP . Because the parent of vTP in

www.manaraa.com

35

TP is an ancestor of exitP , therefore, every leading character of the edge labels on path from

the root of the partition to the parent of vTP matches corresponding characters of p. Since

exitP is between vTP and its parent in TP , then the leading character from the parent to vTP

also matches with the corresponding characters from p. However, a descendant of vTP may be

identified due to coincident.

Line 3 of Algorithm 2 correctly finds a leaf in TP that is a descendant of exitP , because

line 1 identifies vTP which is a descendant of exitP so any leaf that is a descendant of vTP must

also be a descendant of exitP . Since the leaf is a descendant of exitP , then ℓ after line 5 must

be the same as the string depth of exitP . This is because if the string depth of exitP is d, then

any suffix in the subtree under exitP must match at least d character with p. However, by the

definition of exitP the child of exitP with the leading character matching the corresponding

character in p is not in the partition P. Therefore, a suffix from the subtree under any of the

child of exitP in P must not produce a match more than d.

Since Algorithm 2 correctly identifies exitP if it exists, it is easy to verify that the three

conditions given after Algorithm 2 correctly terminates or continues the search. Furthermore,

if p matches a position in the middle of an edge instead of a node, then we can pretend that

the characters from the incomplete matched edge label is not a part of p, and from above, the

searching algorithm can correctly locate the truncated pattern, and by condition 1 and 3(c)

the position in the edge can be found.

If a pattern p cannot be located in the suffix tree, then suppose p′ is the longest prefix of

p that can be found in the suffix tree. The searching algorithm can correctly locate p′, and by

the three conditions presented after algorithm 2 it is easy to see that the algorithm will report

that no match is possible for the pattern p. �

Lemma 3.2.2 Substring searching can be done in O(|p|/B + logB n) disk accesses if |Σ| =

O(n); where |p| is the length of the pattern; B is the size of a disk block and n is the number

of leaves in the suffix tree.

Proof Assume the size of each node to be constant, then we can choose C = O(B) such that

all the nodes of a skeleton partition tree can be stored in one or a constant number of disk

www.manaraa.com

36

blocks. The searching algorithm first attempts to find a node in TP , not counting the disk

accesses needed to compare the leading character with the corresponding characters from the

pattern p, this step takes O(1) disk accesses for each partition encountered. The algorithm will

encounter at most O(logC n) number of partitions, therefore the total number of disk access is

O(logC n) = O(logB n).

The total number of disk accesses needed to compare the leading characters of the edge

labels with appropriate characters of p is not more than O(|p|/B) for all partition we encoun-

tered. This can be done with a slight modification of the searching algorithm presented in

Algorithm 2. In Algorithm 2 the over-matched node is identified by comparing the leading

characters of the edge labels with p, then the match between the representative suffix and p

is done. Instead, whenever a leading character comparison that will cause a new block of p to

be loaded, compare the entire block of p with a representative suffix for all characters in the

existing block. This ensures that for the entire searching algorithm only O(|p|/B) number of

disk accesses are used for the comparisons between p and the leading character of edge labels.

For each partition the algorithm encounters, parts of pattern p is compared with a rep-

resentative suffix, we assume both are stored in logically consecutive disk blocks. Since by

the algorithm no two characters of p are compared twice except the first mismatch character

between p and the representative suffix of each partition, the number of disk accesses for all

partition encountered is O(|p|/B + logC n) = O(|p|/B + logB n).

Finally, for each partition P, a part of a component is accessed to locate the node exitP

and go to the next partition. Note that the number of nodes accessed in this part of the

algorithm is never more than the number of characters compared, and since each component

is a continuous sequence of nodes they can be stored sequentially on logically consecutive disk

blocks. Therefore the total number of disk access is O(|p|/B) for this part of the algorithm,

and O(|p|/B + logB n) for the entire algorithm.

The above proof is valid if all the nodes are of constant size. We observe that a linked list

representation of the skeleton partition tree can be used, where each node uTP points to the

leftmost child, and each of the child point to its right sibling. This ensures that even if the

www.manaraa.com

37

size of the alphabet |Σ| is O(n), the space required for each node of the skeleton partition tree

is still constant. Furthermore, for each node store in the components, instead of storing all

the pointers to children not in the same partition, we simply store a pointer at the node to

a span of physically consecutive disk blocks that contains all the child pointers. This span of

physically consecutive disk blocks should be able to contain O(n) child pointers, then each of

the child pointer can be accessed in O(1) disk accesses. This will incur at most O(1) for each

partition encountered in the search. �

3.3 Updating the Suffix Tree

A dynamic suffix tree must support insertion, deletion, and modification of strings. Since

a modification operation can be viewed as a deletion followed by an insertion, we concentrate

our discussion on the insertion and deletion operations.

3.3.1 Insertion and deletion algorithm

To insert a string into the suffix tree with our layout, all the suffixes of the string is inserted

one-by-one into the suffix tree. The process is the same as McCreight’s algorithm [34] which

we briefly summerize here. Suppose the first i− 1 suffix are inserted into the suffix tree, and

suffix si−1 is inserted as a leaf of node v, we show how to insert suffix si;

1. If v have a suffix link to node u then go to node u, and skip to step 3.

2. If v does not have a suffix link yet, then go to v’s parent in the suffix tree and use its suffix

link to go to node u′; from u′ locate one of the children of u′ whose leading character of

the edge label matches the corresponding character of suffix si, i.e. if the string depth

of u′ is du′ , then the leading character is compared with character s[i + du′ + 1]. Repeat

this process until we reach node u′′ that match either of the two following conditions.

(a) The string depth of the node u′′ is the same as node v; in this case set the suffix

link of v to point to u′′ and go to step 3.

www.manaraa.com

38

(b) The child of u′′ whose leading character of the edge label matches the corresponding

character of suffix si has a string depth greater than v. In this case create a new

node between u′′ and the child with string depth equal to v; point v’s suffix link at

the new node and go to step 3.

3. Traverse down the suffix tree by matching every character on the edge label with its

corresponding character from si, until the first mismatch.

(a) If the algorithm stops at an internal node, then attach si as a new leaf of the internal

node.

(b) If the algorithm stops in the middle of an edge between w and its child w′, then

insert a new internal node in the middle of the edge where the mismatch occurred.

Attach the new internal node as a child of w and the parent of w′ and attach si as

a new leaf of the new internal node.

To delete a string the same process is followed, except leaves and internal nodes are removed

instead of added. The insertion and deletion algorithm for our layout is the same as McCreight’s

algorithm, except that after each suffix is inserted (deleted), the size and possibly some the

rank of the ancestors of the inserted (deleted) leaf need to be changed as well. If the rank of a

node is changed then it need to be moved to another partition. The maintenance of the correct

the partition structure, and size information are discussed in Section 3.3.2 and Section 3.3.3,

respectively. Here we provide an algorithm to traverse upwards in our layout, so that all the

ancestors of a newly inserted (deleted) leaf can be visited.

Suppose the algorithm is at partition P after a leaf is inserted (deleted), then all the affected

nodes can be visited if necessary by using the parent pointers stored with each node in TP and

the appropriate pointers to individual components of the partition. Let rTP be the root node

of the current partition P, we show how to access the partition Q containing the parent of

rTP , and all the ancestors of rTP in Q.

1. The node rTP contains a parent pointer, which points to node uQ.

www.manaraa.com

39

2. In uQ, there is a pointer pointing at the last node of the component, vQ; and also the

string depth of uQ, say du.

3. By the definition of a component, vQ is a leaf of the partition Q, therefore vTQ∃TQ.

4. By using the parent pointer and the string depth stored with each node of TQ, traverse

upwards from vTQ to the node wTQ , where wTQ is the first node with string depth less

than or equal to du.

5. All the ancestor of wTQ in TQ is an ancestor of uQ and also the ancestor of the newly

inserted (deleted) leaf. All the ancestors of uQ between wQ and uQ can be found by

using the pointer to the component stored with wTQ ; and all the ancestors of uQ between

the root of the partition and wQ can be found by using the parent pointers and the

appropriate pointer to different components.

3.3.2 Maintaining the structure of the partition

After a suffix is inserted to or deleted from the suffix tree, the size of all the ancestors of

the leaf is changed by one while the size of all other nodes remain unchanged. This change in

size may cause the rank of some of the ancestors to change as well. However, the number of

ancestors whose rank are changed is limited.

Lemma 3.3.1 The insertion of a new suffix into the suffix tree may increase the rank of a

node by one only if it is an ancestor of the new leaf and is the root node of its partition. The

ranks of all other nodes are unaffected.

Proof If a node is not an ancestor of the new leaf, its size and hence its rank does not change.

The size of each node that is an ancestor of the newly inserted leaf will increase by one. Consider

a node v that is an ancestor of the new leaf. Suppose v is not the root of a partition and let r

denote the root of the partition containing v. If rank(v) were to increase, then size(v) = Ci−1

just before the insertion. Since r is an ancestor of v, then size(r) > size(v) ⇒ size(r) ≥ Ci,

so r could not have been in the same partition as v, a contradiction. �

www.manaraa.com

40

Lemma 3.3.2 The deletion of an existing suffix from the suffix tree may decrease the rank of

a node by one only if it is an ancestor of the deleted leaf and is the leaf of its partition. The

ranks of all other nodes are unaffected.

Proof If a node is not an ancestor of the deleted leaf, then its size and rank does not change.

Suppose v is not a leaf of its partition and rank(v) decreases because of the deletion, then

let u be a descendant of v, such that it is a leaf of the partition containing v. Since rank(v)

decreased by one after the deletion then size(v) = Ci before the deletion, but u is a descendant

of v, thus size(u) ≤ Ci − 1 therefore is not a part of the same partition of v, a contradiction.

Assuming the size of the root and leaves of a partition is known at all time we discuss how

to maintain the structure of the partitions after an insertion and deletion.

3.3.2.1 Insertion

When a new leaf is added to the suffix tree one of the following scenarios will be applicable.

1. If the new leaf is added to an existing internal node vP , and its rank is less than vP then

the new leaf forms a partition by itself and a child pointer and the appropriate leading

character is added to vP .

2. If the new leaf have the same rank as vP , and vP is a branching node in P.

(a) The new leaf is added to P as a component containing only of itself.

(b) A node representing the new leaf is added to TP as a child of vTP . Appropriate

information are set in the new node and vTP , these information is described in

detail in Section 3.1.

3. If the new leaf have the same rank as vP , and vP is a non-branching node in P. Then

after the insertion vP will become a new branching node. The following steps will be

taken,

(a) The new leaf is added to P as a component containing only of itself.

www.manaraa.com

41

(b) A new node vTP is added in TP between two nodes, uTP and its child u′
TP

. They can

be located by use the pointer to the last node of the partition from vP , this pointer

leads to a node wTP which is a leaf in TP ; from wTP travel upwards until the first

node with a string depth less than vP is found.

(c) A new node representing the new leaf is added in TP as a child of vTP .

4. If the new leaf is added to a new internal node vP and the new internal node have the

same rank as the new leaf. Then this new internal is a new branching node of partition

P. Assuming vP need to inserted between uP and its child u′
P then the following are

done,

(a) The new internal node vP is added to the component containing u′
P . Note that it

is possible that uP and u′
P are not in the same component.

(b) The new node vP is a branching node of TP therefore vTP is added to the skeleton

partition tree. The appropriate parent and child of vTP can be found by the same

process as described in Step 3(b).

(c) The new leaf is added as the only node in a new component of P.

(d) A new node wTP representing the new leaf is added to TP as the child of vTP .

5. If the new leaf is added to a new internal node vP , and vP does not have the same rank

as the new leaf. Then the new leaf is in a partition by itself as described in Step 1, and

vP is inserted in the component of partition P containing its other child.

After the new leaf is added, consider the partition P where the root of the partition rP

is an ancestors of the new leaf and its rank is increased by one. If the new rank of rP is not

the same as its parent, then it will become a new partition by itself. The treatment of this

case is the same as case 1 in the list above. If the new rank of rP is the same as its parent

then treatment is similar to case 2 and 3 in the list above. One additional case is that the

node rP could be added under its parent in partition Q replacing it a the leaf, i.e. the parent

continues to be a non-branching node, but cease to be a leaf of the partition. In this case, rP

www.manaraa.com

42

is append to the end of the same component contain its parent as rQ. Then rTQ replaces its

parent in TQ, by simply altering some of the information stored in the existing leaf representing

the parent. Although rTQ has replace its parent as the new last node of the component, the

physical location is not changed, therefore, the pointer to the last node of the component need

not be changed.

If the root of a partition is moved after the insertion of a suffix, it need to be removed

from the component in the old partition; and all of its children in the old partition will become

roots of different partitions. Thus the skeleton partition tree need to be split. We delay this

discussion till after the deletion algorithm is presented, because the policy to maintain the

skeleton partition trees need to take deletion into account as well.

3.3.2.2 Deletion

The process of deletion is similar to that of insertion, however, instead of added leaves and

new internal nodes, they are deleted from the tree. For a string s McCreight’s Algorithm for

insertion is used to visit every suffix of s, but instead of adding a leaf that represents the suffix,

the leaf is deleted. If after the deletion of the leaf its parent node have only one child left, then

the parent node is deleted as well. The location of the parent is the same as in the insertion

algorithm.

By Lemma 3.3.2, only a leaf can exit a component of the partition during deletion. If

there are still nodes left in the component, then the appropriate information are copied to

the location of the old leaf, and nothing else is changed. If the component has no nodes left,

then pointers pointing to the leaf in its parent uP is deleted; and the leaf in TP attached to

uTP is also deleted. If after the deletion uTP became a non-branching node then it is also

removed from TP . When the leaf of a partition is moved from its current partition, unlike

in the case of insertion, there are possibly multiple components that it can join, i.e. all the

components containing one of its children with the same rank, and the decision can be made

in any arbitrary manner. Note that we can find out if and which of uP ’s children will have the

same rank as uP by keeping a list.

www.manaraa.com

43

3.3.2.3 Maintaining the skeleton partition tree

For each component in a partition P, every node of the component have a pointer point to

a location on disk containing another pointer to a leaf node vTP , where vP is the last node of

the component. We refer to the pointer stored at the location as the pointer to the leaf of the

component, or simply pointer to the leaf. To move a skeleton partition tree, two processes are

involved. 1) The skeleton partition tree is moved to a new disk block, and 2) all the pointers

to the leaves of the components must be changed to point to the new location of the leaf in the

new disk block. While the skeleton partition tree can be moved in a constant number of disk

accesses; the pointers to the leaves could be stored in different disk blocks and in the worst

case requires C number of disk accesses to change all of them.

In order to avoid C disk accesses all at once, we propose a way to fix all the pointers affected

incrementally. The basic idea is to first copy one of the skeleton partition trees to a new disk

block, and for each leaf of the skeleton partition tree in the old disk block, a pointer pointing

to the location of the same leaf in the new disk block is stored. This way when a node in the

component need to access the leaf of the component, it will first find the old location of the

leaf, then follow the pointer to the new location of the leaf. Then in the subsequent insertions

or deletions a few of the components are visited at a time and their pointers to the leaves are

“processed,” i.e. the pointers are changed to point to the location of the leaf in the new disk

block. After the pointers to the leaves of all the components of one skeleton partition tree are

processed, the same process is repeated for another skeleton partition tree. While the pointers

to the leaves of a skeleton partition tree is been processed, we refer to this skeleton partition

tree as in the process of being processed.

When a set of skeleton partition trees that need to be split from a disk block. It is possible

that this set of skeleton partition trees are currently being merged into one disk block. If this

is the case, choose the skeleton partition tree whose components are currently being processed,

otherwise pick the skeleton partition tree with the least number of components. If the skeleton

partition tree is being merged, then copy it back to the old disk block and fix the pointers to

the leaves to point back to the old disk block. If the skeleton partition tree completely resides

www.manaraa.com

44

in one disk block, then copy it to a new disk block.

When a set of skeleton partition trees to be merged into a single disk block. As with split,

it is possible that this set of skeleton partition trees are currently being split into multiple

disk blocks. However, only one of these skeleton partition trees is in the process of being

processed. If this is the case, the skeleton partition tree being processed is chosen and continue

to fix the remaining of its components’ pointers to point to the new disk block. If every

skeleton partition tree are in a disk block of their own, then the one with the smallest number

of component is chosen, and is copied into the disk block containing other skeleton partition

trees, or the skeleton partition tree with the largest number of components. The new root of

all the skeleton partition trees being merged is added to the same disk block as the first chosen

skeleton partition tree, i.e. the skeleton partition tree being processed or the skeleton partition

tree with the largest number of components.

With a skeleton partition tree and its destination selected, the pointer to the leaf of each

of its components are processed in subsequent insertion and deletions. Suppose a node vP is

an exit node of P, i.e. from vP the insertion or deletion algorithm moves to another partition

Q. Let T = {TQ1, . . . ,TQk}, k ≤ C, be a set of skeleton partition tree that is being merged

into one disk block or split into k disk blocks. Let TQi be the skeleton partition tree that is

currently being processed. If any node uQj such that uQj is the root of TQj ∈ T is visited,

then two of TQi’s components are processed. Note that by this definition, even if TQj has been

completely processed the algorithm would still process two of TQi’s components. This only

incurs constant number of disk accesses per partition visited, therefore it does not increase the

over-all asymptotic performance of our algorithm.

The aforementioned incremental correction of the pointers only applies to partitions whose

rank is strictly greater than zero. Because for any partition whose rank is zero, every node

except the leaves are branching. Therefore, the subtree that is the partition is also the skeleton

partition tree, so there is no need to store the components and the skeleton partition tree

separately, and the pointer to the leaf of each component can be eliminated. So no process

are needed, only sometime when they are visited the partition need to be moved to a different

www.manaraa.com

45

block.

For a skeleton partition tree whose components are currently being processed, it might be

possible that a subsequent insertion would cause this tree to split further, or merge with other

skeleton partition trees that are also being processed. The accumulation of this could lead to

a skeleton partition tree being fragmented into many different pieces, therefore affecting the

performance of our algorithm. We show this scenario is not possible in the subsequent lemmas.

Lemma 3.3.3 Let T = {TP1, . . . ,TPk} be a set of skeleton partition trees to be moved out of

a disk block due to the removal of node vP as the parent of their roots. The rank of the root of

any TPi ∈ T cannot increase until all the skeleton partition trees are processed.

Proof Let T = {TP1, . . . ,TPk} be a set of skeleton partition trees affected by the same inser-

tion. Let rPi be the root of TPi. Since TPi is being processed, then the rank of rPi is greater

than zero. Let the size of rPi in the beginning when T start being processed be x, and the total

size of the roots of all other skeleton partition tree be y at the same time. Since the parent of

all the nodes has just been promoted then its size is Cj, where j < 1, and Cj−1 ≤ x, y < Cj.

So at least y ≥ C number of insertion in the subtree under rPi is required to cause its rank to

increase. By our algorithm T will be processed at least 2y ≥ 2C times due to the insertions,

so all the skeleton partition trees should be processed by the time rPi’s rank is increased. �

Lemma 3.3.4 Let T = {TP1, . . . ,TPk} be a set of skeleton partition trees to be moved into of

the same disk block due to the decrease in rank of node vP , the parent of their roots. The rank

of the root of any TPi ∈ T cannot increase until all the skeleton partition trees are processed.

Proof The proof is the same as Lemma 3.3.3.

Lemmas 3.3.3 and 3.3.4 shows that while a set of partitions are being processed, none of

them can be affect by a split internally until all of them are completely processed. Although,

it is possible that for a set of skeleton partition trees that are currently being merged, they

can be split back into individual trees due to the removal of their parent. This does not cause

problem to our algorithm, because instead of merging the algorithm will start to split out the

www.manaraa.com

46

already merged partitions, and still maintain the fact that only partition is being processed

for the set of partitions.

Lemma 3.3.5 Let T = {TP1, . . . ,TPk} be a set of skeleton partition trees being processed for

merge. It is not possible to merge them with another set of skeleton partition trees currently

being processed.

Proof Assume to the contrary, that another set skeleton partition trees that are being pro-

cessed is to be merged with T = {TP1, . . . ,TPk}. They cannot be affected by the same merge

operation because in that case they will be the same set of skeleton partition trees. Consider

the node vP that caused the partitions in T to be merged, size(vP) was Ci+1 − 1 at the time

of the merge. Since T is being processed, their rank must be greater than zero. In order for

T to be merged with another set of partitions with the same rank, at least C deletion must

occur under vP , this will cause 2C components to be processed. So T would be completely

processed.

3.3.2.4 Maintaining the components

While the skeleton partition tree is guaranteed to fit in one or constant number of disk

blocks, each individual component may not. However, since a component consists of all nodes

on a path in the suffix tree, therefore each disk block can be used to store a consecutive segment

of a component. During insertion eventually a disk block containing a consecutive segment of

a component may be completely filled. In this case, the disk block containing the consecutive

segment is marked for split; and a new disk block is obtained; copy the last two nodes in the

segment to the new disk block. For every subsequent visit to these two disk blocks the last two

nodes of the segment contained in the old disk block is moved to the new disk block, until B
2

nodes are moved, where B is the total number of nodes can be stored in one disk block. This

is similar to the process Ferragina and Grossi used for string B-trees [18].

www.manaraa.com

47

3.3.3 Maintaining the correct size information

Lemmas 3.3.1 and 3.3.2 limits the number of nodes that may be moved to another partition.

However, it does not limit the number of nodes whose size are changed due to insertion.

Consider that if a suffix tree is build for the string an$ (the character a repeated n times

followed by $), and the new string an−1b$ is being inserted. The size of n − 1 internal nodes

need to be changed, while there are at most logC n number of nodes whose rank need to be

changed. Therefore, it is impossible to keep track of the size of all nodes. In order to decrease

the number of nodes whose size is changed after the insertion of a suffix we make the following

observations.

1. During insertion it is enough to know the size of the root and the size of all the leaves

for any given partition. Therefore only the size of a subset of nodes need to be known at

all times. As long as this subset of nodes allows us to:

(a) Calculate the size of the root and any leaf of any partition.

(b) Calculated the size of a node that just became the root or a leaf of a partition.

2. if the suffix tree is build incrementally by inserting one suffix at a time, then for any

branching node of a partition, it is possible to keep track the size of all but one of

its children in the same partition. This is because when a non-branching node of the

partition change into a branching node, then the new child was the root of a partition so

its size is known, this is true with all subsequent children. If a node became a branching

node due to a deletion in its subtree, and the merging of it with multiple of its children.

Then the size of each of these children are know because they were the roots of their own

partition.

With the two observations above we keep track of the size as follows,

1. If vTP is the root or a leaf of the partition.

www.manaraa.com

48

2. Let vTP be a branching node, and let rTP be the root of the partition P. If every node uP

on the path from rP to vP , uTP ∈ TP , i.e. every node is a part of the skeleton partition

tree.

3. If uP is a non-branching child of a node that satisfies either of the two rules above.

4. If vTP is a branching node, but does not satisfy either of the first two rules, then the size

of all but one of its children are correctly maintained at all times.

5. For every node in P, the total size of all its children not in partition P is maintained.

If rP is the root of a partition, any insertion or deletion of a leaf in its subtree rP will

be visited either during the search or when updating the partitions. So its size information

can be updated if necessary, this is also true with all leaves and branching nodes whose size

are known. So the first two conditions can be maintained. If the size of the nodes satisfying

condition three are stored in their parents in the skeleton partition tree, then their size can be

updated as well, since its possible to find out if a new leaf is added or deleted under a child.

This method can also be used to satisfy condition four. Condition five can be done easily

because if the size of a child of a non-branching node is changed, the non-branching node must

be the exit node of the partition, thus it will be accessed and the total count can be updated.

When a partition is split it can be seen from the five conditions above, the size of the root

of ever new partition are know. In the case the new root is a branching node nothing need

to be done. But if the new root is a non-branching node, the size of it’s child in the same

partition can be easily calculated from its own size and the total size of all its children not in

the partition. When multiple partitions are merged, then it can be seen all five conditions are

observed.

When a non-branching node vP of the partition became a branching node by the insertion

of a new node wP , the existing child of vP , say uP could be an branching node. Before the

insertion of wP , uP is a node satisfying condition four, however after the insertion it may satisfy

condition two. If this is the case then the size of vP is know because it satisfies condition three

before the insertion, and since the total size of all its children not in the same partition was

www.manaraa.com

49

known, the size of uP can be calculated. If one of uP ’s children is also a branching node, then

its size can be calculated the same way.

Lemma 3.3.6 To insert or delete one leaf in our layout takes O(logC n) number of disk ac-

cesses, and to insert a string of length n into a suffix tree of size m takes O(n logC(n + m))

disk accesses; and to delete a string of length n into a suffix tree of size m takes O(n logC m)

disk access.

Proof After the insertion or deletion of a leaf, all the partition that contains the ancestor

of the leaf need to be updated; and there are at most O(logC n) partitions. To process each

partition at most O(1) disk accesses are needed. Therefore to insert or delete a leaf takes

O(logC n) time.

To insert a string using McCreight’s algorithm the position of the first leaf to be inserted

takes O(n + logC n) disk accesses to locate. The total disk accesses needed to locate the

position for subsequent suffixes are no more than O(n). To process all the partition containing

the ancestors takes O(n logC(n + m)) disk accesses. This is the same for deletion except the

size of the tree is n in the worst case, not n + m, therefore the number of disk accesses is

O(n logC n).

www.manaraa.com

50

CHAPTER 4. SELF-ADJUSTING LAYOUT

Like most indexing structures, suffix trees are built with the intention that they will be

queried many times. Therefore, it is very important to devise algorithms that not only guaran-

tee the worst case performance of a single query, but also provide good performance for a large

sequence of queries collectively. In 1985, Sleator and Tarjan [35] created the self-adjusting

binary tree by using a “splay” process, and proved that it produces the optimal number of disk

accesses for a large sequence of queries. The splaying technique has received wide attention

since the publication of their ground breaking paper.

4.1 Self-adjusting layout

For each node v of the suffix tree, instead of using the number of leaves in the subtree

(sizev), we define the score of a node v (denoted as scorev) as follows; for any leaf v of the

suffix tree, scorev is one plus the number of times v is accessed in a sequence of queries. If v

is an internal node, then the score is defined as the sum of the score of all the leaves in the

subtree under v. Similarly, we define rankv = ⌊logC(scorev)⌋.

Consider a set of N queries {q1, q2, . . . , qN} consisting of substring searches, suffix insertions

and/or suffix deletions. For a node v in the suffix tree, every substring search and suffix

insertion query will only cause scorev to increase by one. However, scorev could decrease by

more than one during suffix deletion operations.

Lemma 4.1.1 The insertion of a new suffix into the suffix tree may increase the rank of a

node by one only if it is an ancestor of the new leaf and is the root node of its partition. The

ranks of all other nodes are unaffected.

Proof Same as the proof for Lemma 3.3.1.

www.manaraa.com

51

Lemma 4.1.2 When a leaf v is removed from a suffix tree, then the rank of a node u will not

change if u is not an ancestor of v, or it is a branching node in its partition, or the ancestor

of a branching node in its partition.

Proof Suppose leaf v is removed from the suffix tree. For any node u that is not an ancestor

of v in the suffix tree, u’s score and rank are not changed. If uP is a branching node and an

ancestor of v, then the score and rank of at least one child of uP also in P is not affected, and

since uP must have a rank equal to or greater than any of its children, uP ’s rank is unaffected.

If uP is the ancestor of a branching node wP and an ancestor of v, wP ’s rank is not affected

by v’s deletion, so uP ’s rank must not change either. �

Although more than one node can change their partition under suffix deletion, but the size

of skeleton partition tree and the number of components in the new tree is still bounded by

C, therefore our delayed merging technique will still give the same asymptotic bound.

4.2 Self-adjusting performance

Given a sequence of N queries, we assume without loss of generality that all queries are suc-

cessful and end at one of the leaf nodes of the suffix tree. If this sequence of queries is known be-

forehand and the suffix tree is partitioned accordingly, then the number of disk accesses needed

to answer any of the queries will be O
(

|p|
C

+ rank(r)− rank(v)
)

= O
(

|p|
C

+ logC
N

score(v)

)

where |p| is the length of the query, r is the the root node of the suffix tree, and v is the leaf

where the query ends. Let p1, p2, . . . , pN be the sequence of queries, and let {v1, v2, . . . , vM}

be the set of leaves in the suffix tree. Over the entire sequence of queries, the performance of

our layout is

O





N
∑

i=1

|pi|

C
+

M
∑

j=1

score(v) logC

N

score(v)



 (4.1)

This is the optimal performance for a given sequence of queries for any data structure indexing

strings [11]. We now show that this worst case performance can be achieved even if the sequence

of queries are is known beforehand.

www.manaraa.com

52

Theorem 4.2.1 Let P = p1, p2, . . . , pN be a sequence of N queries, and S be the set of numbers

{s1, s2, . . . , sM} such that si is the number of times leaf vi is accessed by patterns in P . Then

O





N
∑

i=1

|pi|

C
+

M
∑

j=1

sj logC

N

sj





number of disk accesses are needed to answer all queries in P .

Proof Since the sequence of queries is not known beforehand, we calculate how many more

disk accesses are needed than the ideal scenario. Consider a suffix tree in our layout where

all leaves have an initial score of one. Let vi be a leaf node which will be accessed si times

in the sequence of N queries. The ideal number of disk accesses is O(|p|
C

+ logC N − logC si)

for each of the si times v is accessed. For the first C queries made that end at vi the number

of disk accesses is O
(

|p|
C

+ rank(r)− rank(v)
)

= O
(

|p|
C

+ logC N
)

which requires O(logC si)

more disk accesses than ideal. For the next C2 − C number of queries, the number of disk

accesses is O(logC si − 1) more than the ideal number of disk accesses, and so on. The sum of

this telescoping series is

B logB k + (B2 −B)(logB si − 1) + . . . = B + B2 . . . + BlogB si = O(si)

Therefore the total number of disk accesses for all of the si times that vi is accessed is

O
(

si
|p|
B

+ si logB
N
si

+ si

)

, and for the sequence of queries P , the number of disk accesses

needed is

O





N
∑

i=1

|pi|

B
+

M
∑

j=1

sj

(

logB

N

sj

+ Θ(1)

)



 = O





N
∑

i=1

|pi|

B
+

M
∑

j=1

sj logB

N

sj





�

So even with the slow promotion of the leaf, the optimal disk access bound can be achieved.

4.3 Discussion

Let qi and qj be two queries from the sequence of N queries, that share a common prefix

p. Let vi and vj be the two leaves where qi and qj will end, respectively. Then the score of

www.manaraa.com

53

the lowest common ancestor of vi and vj , say v, is at least the sum of the scores of vi and vj .

Therefore even if qi and qj are infrequent queries compared to others queries in the sequence,

v could still have a high rank, thus potentially reducing the number of disk accesses needed to

find vi and vj . This is also true for a sequence of such queries.

For a balanced tree there will always be Θ
(

|p|
B

+ logB M
)

number of disk accesses, where

M is the number of leaves in the tree. For any self-adjusting data structure for strings in

secondary storage, suppose that every leaf is accessed equal number of times, then the worst

case performance of the self-adjusting data structure is the same as the balanced tree, because

N
k

= M . But if the self-adjusting data structure is not balanced to start with, then it will

take some time for it to became as efficient as the balanced tree. Therefore self-adjusting data

structure will not be as effective as the balanced tree.

From Equation 4.1 we can also observe that if a leaf is accessed B times more frequently

than other leaves in the tree in the sequence of N queries, it will only save a total of B disk

accesses compared to the balanced tree. So if we assume that the self-adjusting data structure

is not balanced in the beginning, then it would require a very skewed data set to offset the

initial inefficiency of the self-adjusting data structure.

This observation provides an explanation for the results in [8, 39], where the authors were

surprised that self-adjusting data structures do not perform nearly as well as balance trees,

except for very skewed data sets. However, if the suffix tree is built with our layout scheme,

then it will be a balanced tree, potentially avoiding the initial inefficiencies. But it should be

noted that all self-adjusting data structures will incur an overhead for the adjustment which

will also affect their performance.

www.manaraa.com

54

CHAPTER 5. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

In this dissertation we presented a linear time algorithm for sorting the suffixes of a string

over an integer alphabet, or equivalently, for constructing the suffix array of the string. Our

algorithm can also be used to construct suffix trees in linear time. Apart from being one of

the first direct algorithms for constructing suffix arrays in linear time, the simplicity and space

advantages of our algorithm are likely to make it useful in suffix tree construction as well. An

important feature of our algorithm is that it breaks the string into substrings of variable sizes,

while other linear time algorithms break the string into substrings of a fixed size. Although our

algorithm has a linear worst case run-time, some of the fastest sorting algorithm for integers

are not linear. Therefore some future research should focus on improving the performance of

linear time suffix array construction algorithm.

We also presented a new tree layout scheme for secondary storage and showed in detail

how to use this layout scheme to store suffix trees in secondary storage. We also provided

algorithms with provably good worst-case performance for search and update operations. The

performance of our algorithms when applied to suffix trees matches what can be obtained by

the use of string B-trees, a data structure specifically designed to efficiently support string

operations on secondary storage.

Finally, we presented a self-adjusting variant of the suffix tree layout scheme in secondary

storage, which allows insertion and deletion of strings. We showed that our layout scheme is

optimal for a sequence of queries. This settles the question first proposed by Sleator and Tarjan

[35] of constructing an optimal self-adjusting data structure for strings. Our layout scheme can

also be applied to PATRICIA trees and possibly to many other data structures whose toplogy

is uniquely determined by the data being indexed and cannot be altered. However, we also call

www.manaraa.com

55

the benefit of non-balanced self-adjusting data structures for strings into question. We argued

that due to the overhead needed to readjust itself, self-adjusting data structures are not likely

to perform as well as balanced trees except for very skewed data sets. But since the initial

state of our layout scheme is a balanced tree, and it only readjusts itself very infrequently it

may perform well in practice.

Suffix trees are extensively used in biological applications. As our scheme provides how to

efficiently store and operate on them in secondary storage that is competitive with some of the

best available alternatives, the research presented provides justification for using suffix trees in

secondary storage as well. It is important to compare how the presented algorithms compare in

practice with other storage schemes developed so far (those with and without provable bounds

on disk accesses), and such work remains to be carried out. Some of the possible work in

the future includes: 1) improve the suffix tree construction algorithm so that it is optimal for

secondary storage and 2) provide a cache oblivious version of the layout scheme.

www.manaraa.com

56

BIBLIOGRAPHY

[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its ap-

plications to genome analysis. In Proc. 2nd Workshop on Algorithms in Bioinformatics,

pages 449–463, 2002.

[2] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix

arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[3] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Handbook of Computational Molecu-

lar Biology (Chapman & All/Crc Computer and Information Science Series), chapter 7:

“Enhanced Suffix Arrays and Applications”. Chapman & Hall/CRC, 2005.

[4] M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact string matching based on

suffix arrays. In Proc. 9th International Symposium on String Processing and Information

Retrieval, pages 31–43, 2002.

[5] S. Aluru. Handbook of Computational Molecular Biology (Chapman & All/Crc Computer

and Information Science Series). Chapman & Hall/CRC, 2005.

[6] S. J. Bedathur and J. R. Haritsa. Engineering a fast online persistent suffix tree con-

struction. In Proc. 20th International Conference on Data Engineering, pages 720–731,

2004.

[7] S. J. Bedathur and J. R. Haritsa. Search-optimized suffix-tree storage for biological appli-

cations. In Proc. 12th IEEE International Conference on High Performance Computing,

pages 29–39, 2005.

www.manaraa.com

57

[8] J. Bell and G. Gupta. An evaluation of self-adjusting binary search tree techniques.

Software - Practice and Experience, 23(4):369–382, 1993.

[9] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler. Genbank.

Nucleic Acids Research, 34(Database issue):D16–D20, 2006.

[10] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In

Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 360–369, 1997.

[11] V. Ciriani, P. Ferragina, F. Luccio, and S. Muthukrishnan. Static optimality theorem

for external memory string access. In Proc. 43rd Annual Symposium on Foundations of

Computer Science, pages 219–227, 2002.

[12] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proc. 7th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 383–391, 1996.

[13] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.

Alignment of whole genomes. Nucleic Acids Research, 27:2369–2376, 1999.

[14] M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th Annual

Symposium on Foundations of Computer Science, pages 137–143, 1997.

[15] M. Farach and S. Muthukrishnan. Optimal logarithmic time randomized suffix tree con-

struction. In Proc. 23rd International Colloquium on Automata, Languages and Program-

ming, pages 550–561, 1996.

[16] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity of

suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

[17] P. Ferragina and R. Grossi. Fast string searching in secondary storage: theoretical de-

velopments and experimental results. In Proc. 7th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 373–382, 1996.

[18] P. Ferragina and R. Grossi. The string B-tree: a new data structure for string search in

external memory and its applications. Journal of the ACM, 46(2):236–280, 1999.

www.manaraa.com

58

[19] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. Information Retrieval: Data Structures

& Algorithms, chapter 5: “New indices for text: PAT trees and PAT arrays”, pages 66–82.

Prentice Hall, 1992.

[20] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to

text indexing and string matching. In Proc. 32nd Annual ACM Symposium on Theory of

Computing, pages 397–406, 2000.

[21] W. K. Hon, K. Sadakane, and W. K. Sung. Breaking a time-and-space barrier in con-

structing full-text indices. In Proc. 44th Annual Symposium on Foundations of Computer

Science, pages 251–260, 2003.

[22] E. Hunt, M. P. Atkinson, and R. W. Irving. Database indexing for large DNA and protein

sequence collections. The VLDB Journal, 11(3):256–271, 2002.

[23] H. Itoh and H. Tanaka. An efficient method for in memory construction of suffix array. In

Proc. String Processing and Information Retrieval Symposium & International Workshop

on Groupware, pages 81–88, 1999.

[24] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Proc.

30th International Colloquium on Automata, Languages and Programming, pages 943–

955, 2003.

[25] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-

prefix computation in suffix arrays and its applications. In Proc. 12th Annual Symposium

Combinatorial Pattern Matching, pages 181–92, 2001.

[26] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays. In

Proc. 14th Annual Symposium Combinatorial Pattern Matching, pages 186–199, 2003.

[27] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. In Proc. 14th

Annual Symposium Combinatorial Pattern Matching, pages 200–210, 2003.

www.manaraa.com

59

[28] P. Ko and S. Aluru. Handbook of Computational Molecular Biology (Chapman & All/Crc

Computer and Information Science Series), chapter 6: “Suffix Tree Applications in Com-

putational Biology”. Chapman & Hall/CRC, 2005.

[29] P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal of

Discrete Algorithms, 3(2-4):143–156, 2005.

[30] P. Ko and S. Aluru. Obtaining provably good performance from suffix trees in secondary

storage. In Proc. 17th Annual Symposium Combinatorial Pattern Matching, pages 72–83,

2006.

[31] S. Kurtz. Reducing the space requirement of suffix trees. Software - Practice and Expe-

rience, 29(13):1149–1171, 1999.

[32] N.J. Larsson and K. Sadakane. Faster suffix sorting. Technical Report LU-CS-TR:99-214,

LUNDFD6/(NFCS-3140)/1–20/(1999), Department of Computer Science, Lund Univer-

sity, Sweden, 1999.

[33] U. Manber and G. Myers. Suffix arrays: a new method for on-line search. SIAM Journal

on Computing, 22(5):935–948, 1993.

[34] E. M. McCreight. A space-economical suffix tree construction algorithm. Journal of the

ACM, 23(2):262–272, 1976.

[35] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the ACM,

32(3):652–686, 1985.

[36] S. Tata, R.A. Hankins, and J.M. Patel. Practical suffix tree construction. In Proc. 13th

International Conference on Very Large Data Bases, pages 36–47, 2004.

[37] E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14(3):249–260, 1995.

[38] P. Weiner. Linear pattern matching algorithms. In Proc. 14th Symposium on Switching

and Automata Theory, pages 1–11, 1973.

www.manaraa.com

60

[39] H. E. Williams, J. Zobel, and S. Heinz. Self-adjusting trees in practice for large text

collections. Software - Practice and Experience, 31(10):925–939, 2001.

	2007
	Suffix trees and suffix arrays in primary and secondary storage
	Pang Ko
	Recommended Citation

	tmp.1430414646.pdf.mi1Z9

